Skip to main content
Log in

Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The electronic properties of two-dimensional honeycomb structures of molybdenum disulfide (MoS2) subjected to biaxial strain have been investigated using first-principles calculations based on density functional theory. On applying compressive or tensile bi-axial strain on bi-layer and mono-layer MoS2, the electronic properties are predicted to change from semiconducting to metallic. These changes present very interesting possibilities for engineering the electronic properties of two-dimensional structures of MoS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, A. K; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  2. Fuhrer, M. S.; Lau, C. N.; MacDonald, A. H. Graphene: Materially better carbon. MRS Bull. 2010, 35, 289–295.

    Article  CAS  Google Scholar 

  3. Lebègue, S.; Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 2009, 79, 115409.

    Article  Google Scholar 

  4. Cahangirov, S.; Topsakal, M.; Akturk, E.; Sahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

    Article  CAS  Google Scholar 

  5. Houssa, M.; Pourtois, G.; Afanas’ev, V. V.; Stesmans, A. Electronic properties of two-dimensional hexagonal germanium. Appl. Phys. Lett. 2010, 96, 082111.

    Article  Google Scholar 

  6. Houssa, M.; Pourtois, G.; Afanas’ev, V. V.; Stesmans, A. Can silicon behave like graphene? A first-principles study. Appl. Phys. Lett. 2010, 97, 112106.

    Article  Google Scholar 

  7. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J., et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

    Article  CAS  Google Scholar 

  8. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    Article  CAS  Google Scholar 

  9. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  10. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  CAS  Google Scholar 

  11. Han, S. W.; Kwon, H.; Kim, S. K.; Ryu, S.; Yun, W. S.; Kim, D. H.; Hwang, J. H.; Kang, J. S.; Baik, J.; Shin, H. J., et al. Band-gap transition induced by interlayer van der waals interaction in MoS2. Phys. Rev. B 2011, 84, 045409.

    Article  Google Scholar 

  12. Lebegue, S.; Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 2009, 79, 115409.

    Article  Google Scholar 

  13. Li, T.; Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 2007, 111, 16192–16196.

    Article  CAS  Google Scholar 

  14. Ataca, C.; Sahin, H.; Akturk, E.; Ciraci, S. A comparative study of lattice dynamics of three- and two-dimensional MoS2. J. Phys. Chem. C 2011, 115, 3934–3941.

    Article  CAS  Google Scholar 

  15. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  CAS  Google Scholar 

  16. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  17. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I., et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials. J. Phys.: Cond. Matt. 2009, 21, 395502.

    Article  Google Scholar 

  18. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comp. Chem. 2006, 27, 1787–1799.

    Article  CAS  Google Scholar 

  19. Barone, V.; Casarin, M.; Forrer, D.; Pavone, M.; Sambi, M.; Vittadini, A. Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases. J. Comp. Chem. 2009, 30, 934–939.

    Article  CAS  Google Scholar 

  20. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

    Article  Google Scholar 

  21. Kam, K. K.; Parkinson, B. Detailed photocurrent spectros-copy of the semiconducting group VIB transition metal dichalcogenides. J. Chem. Phys. 1982, 86, 463–467.

    Article  CAS  Google Scholar 

  22. Young, P. A. Lattice parameter measurements on molybdenum disulphide. Brit. J. Appl. Phys. (J. Phys. D) 1968, 1, 936–938.

    Google Scholar 

  23. Boker, T.; Severin, R.; Muller, A.; Janovitz, C.; Manzke, R.; Voss, D.; Kruger, P.; Mazur, A.; Pollmann, J. Band structure of MoS2, MoSe2, and α-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 2001, 64, 235305.

    Article  Google Scholar 

  24. Li, W.; Chen, J. F.; He, Q.; Wang, T. Electronic and elastic properties of MoS2. Physica B 2010, 405, 2498–2502.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Scalise.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scalise, E., Houssa, M., Pourtois, G. et al. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2 . Nano Res. 5, 43–48 (2012). https://doi.org/10.1007/s12274-011-0183-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0183-0

Keywords

Navigation