Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials

Abstract

Sustainable development and continued prosperity of humanity hinge on the availability of renewable energy sources on a terawatts scale. In the long run, solar energy is the only source that can meet this daunting demand. Widespread utilization of solar energy faces challenges as a result of its diffusive (hence low energy density) and intermittent nature. How to effectively harvest, concentrate, store and redistribute solar energy constitutes a fundamental challenge that the scientific community needs to address. Photoelectrochemical (PEC) water splitting is a process that can directly convert solar energy into chemical energy and store it in chemical bonds, by producing hydrogen as a clean fuel source. It has received significant research attention lately. Here we provide a concise review of the key issues encountered in carrying out PEC water splitting. Our focus is on the balance of considerations such as stability, earth abundance, and efficiency. Particular attention is paid to the combination of photoelectrodes with electrocatalysts, especially on the interfaces between different components.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    BP Statistical Review of World Energy. BP Plc, 2014.

  2. [2]

    Nocera, D. G. The artificial leaf. Acc. Chem. Res. 2012, 45, 767–776.

    Article  Google Scholar 

  3. [3]

    Liu, C.; Dasgupta, N. P.; Yang, P. D. Semiconductor nanowires for artificial photosynthesis. Chem. Mater. 2013, 26, 415–422.

    Article  Google Scholar 

  4. [4]

    Raven, P. H.; Evert, R. F.; Eichhorn, S. E. Biology of Plants; W. H. Freeman: New York, 2005.

    Google Scholar 

  5. [5]

    Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    Article  Google Scholar 

  6. [6]

    Boddy, P. J. Oxygen evolution on semiconducting TiO2. J. Electrochem. Soc. 1968, 115, 199–203.

    Article  Google Scholar 

  7. [7]

    Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  Google Scholar 

  8. [8]

    Aharon-Shalom, E.; Heller, A. Efficient p-lnP(Rh-H alloy) and p-lnP(Re-H alloy) hydrogen evolving photocathodes. J. Electrochem. Soc. 1982, 129, 2865–2866.

    Article  Google Scholar 

  9. [9]

    Licht, S.; Wang, B.; Mukerji, S.; Soga, T.; Umeno, M.; Tributsch, H. Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 2000, 104, 8920–8924.

    Article  Google Scholar 

  10. [10]

    Kenney, M. J.; Gong, M.; Li, Y. G.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H. J. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 2013, 342, 836–840.

    Article  Google Scholar 

  11. [11]

    Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014, 344, 1005–1009.

    Article  Google Scholar 

  12. [12]

    van de Krol, R. Principles of photoelectrochemical cells. In Photoelectrochemical Hydrogen Production. van de Krol, R.; Grätzel, M., Eds.; Springer US: New York, 2012; pp 13–67.

    Chapter  Google Scholar 

  13. [13]

    Andrade, L.; Lopes, T.; Ribeiro, H. A.; Mendes, A. Transient phenomenological modeling of photoelectrochemical cells for water splitting—Application to undoped hematite electrodes. Int. J. Hydrogen Energy 2011, 36, 175–188.

    Article  Google Scholar 

  14. [14]

    Hu, S.; Xiang, C. X.; Haussener, S.; Berger, A. D.; Lewis, N. S. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 2013, 6, 2984–2993.

    Article  Google Scholar 

  15. [15]

    Haussener, S.; Xiang, C. X.; Spurgeon, J. M.; Ardo, S.; Lewis, N. S.; Weber, A. Z. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy Environ. Sci. 2012, 5, 9922–9935.

    Article  Google Scholar 

  16. [16]

    Woodhouse, M.; Parkinson, B. A. Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem. Soc. Rev. 2009, 38, 197–210.

    Article  Google Scholar 

  17. [17]

    Lide, D. R. CRC Handbook of Chemistry and Physics; CRC Press: London, 2003.

    Google Scholar 

  18. [18]

    Sathre, R.; Scown, C. D.; Morrow, W. R.; Stevens, J. C.; Sharp, I. D.; Ager, J. W.; Walczak, K.; Houle, F. A.; Greenblatt, J. B. Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ. Sci. 2014, 7, 3264–3278.

    Article  Google Scholar 

  19. [19]

    Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z. B.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 2013, 6, 1983–2002.

    Article  Google Scholar 

  20. [20]

    Bolton, J. R.; Strickler, S. J.; Connolly, J. S. Limiting and realizable efficiencies of solar photolysis of water. Nature 1985, 316, 495–500.

    Article  Google Scholar 

  21. [21]

    Seitz, L. C.; Chen, Z. B.; Forman, A. J.; Pinaud, B. A.; Benck, J. D.; Jaramillo, T. F. Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. ChemSusChem 2014, 7, 1372–1385.

    Article  Google Scholar 

  22. [22]

    Cho, I. S.; Chen, Z. B.; Forman, A. J.; Kim, D. R.; Rao, P. M.; Jaramillo, T. F.; Zheng, X. L. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 2011, 11, 4978–4984.

    Article  Google Scholar 

  23. [23]

    Varghese, O. K.; Grimes, C. A. Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: A review with examples using titania nanotube array photoanodes. Sol. Energy Mater. Sol. Cells 2008, 92, 374–384.

    Article  Google Scholar 

  24. [24]

    Seabold, J. A.; Choi, K.-S. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 2186–2192.

    Article  Google Scholar 

  25. [25]

    Zhong, D. K.; Gamelin, D. R. Photoelectrochemical water oxidation by cobalt catalyst (“Co-Pi”)/α-Fe2O3 composite photoanodes: Oxygen evolution and resolution of a kinetic bottleneck. J. Am. Chem. Soc. 2010, 132, 4202–4207.

    Article  Google Scholar 

  26. [26]

    Zhong, D. K.; Choi, S.; Gamelin, D. R. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. J. Am. Chem. Soc. 2011, 133, 18370–18377.

    Article  Google Scholar 

  27. [27]

    Barroso, M.; Cowan, A. J.; Pendlebury, S. R.; Grätzel, M.; Klug, D. R.; Durrant, J. R. The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J. Am. Chem. Soc. 2011, 133, 14868–14871.

    Article  Google Scholar 

  28. [28]

    Gamelin, D. R. Water splitting: Catalyst or spectator? Nat. Chem. 2012, 4, 965–967.

    Article  Google Scholar 

  29. [29]

    Le Formal, F.; Tétreault, N.; Cornuz, M.; Moehl, T.; Grätzel, M.; Sivula, K. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2011, 2, 737–743.

    Article  Google Scholar 

  30. [30]

    Hisatomi, T.; Le Formal, F.; Cornuz, M.; Brillet, J.; Tétreault, N.; Sivula, K.; Grätzel, M. Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers. Energy Environ. Sci. 2011, 4, 2512–2515.

    Article  Google Scholar 

  31. [31]

    Yang, X. G.; Liu, R.; Du, C.; Dai, P. C.; Zheng, Z.; Wang, D. W. Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition. ACS Appl. Mater. Interfaces 2014, 6, 12005–12011.

    Article  Google Scholar 

  32. [32]

    Liao, M. J.; Feng, J. Y.; Luo, W. J.; Wang, Z. Q.; Zhang, J. Y.; Li, Z. S.; Yu, T.; Zou, Z. G. Co3O4 nanoparticles as robust water oxidation catalysts towards remarkably enhanced photostability of a Ta3N5 photoanode. Adv. Funct. Mater. 2012, 22, 3066–3074.

    Article  Google Scholar 

  33. [33]

    Lin, F. D.; Boettcher, S. W. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat. Mater. 2014, 13, 81–86.

    Article  Google Scholar 

  34. [34]

    Mills, T. J.; Lin, F. D.; Boettcher, S. W. Theory and simulations of electrocatalyst-coated semiconductor electrodes for solar water splitting. Phys. Rev. Lett. 2014, 112, 148304.

    Article  Google Scholar 

  35. [35]

    Reece, S. Y.; Hamel, J. A.; Sung, K.; Jarvi, T. D.; Esswein, A. J.; Pijpers, J. J. H.; Nocera, D. G. Wireless solar water splitting using silicon-based semiconductors and earth abundant catalysts. Science 2011, 334, 645–648.

    Article  Google Scholar 

  36. [36]

    Vesborg, P. C. K.; Jaramillo, T. F. Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy. RSC Adv. 2012, 2, 7933–7947.

    Article  Google Scholar 

  37. [37]

    Li, Z. S.; Luo, W. J.; Zhang, M. L.; Feng, J. Y.; Zou, Z. G. Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 2013, 6, 347–370.

    Article  Google Scholar 

  38. [38]

    Faber, M. S.; Jin, S. Earth abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542.

    Article  Google Scholar 

  39. [39]

    Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294–2320.

    Article  Google Scholar 

  40. [40]

    Liu, R.; Zheng, Z.; Spurgeon, J.; Yang, X. G. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 2014, 7, 2504–2517.

    Article  Google Scholar 

  41. [41]

    Sun, K.; Shen, S. H.; Liang, Y. Q.; Burrows, P. E.; Mao, S. S.; Wang, D. L. Enabling silicon for solar-fuel production. Chem. Rev. 2014, 114, 8662–8719.

    Article  Google Scholar 

  42. [42]

    Hoang, S.; Berglund, S. P.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: Synergistic effects between Ti3+ and N. J. Am. Chem. Soc. 2012, 134, 3659–3662.

    Article  Google Scholar 

  43. [43]

    Liu, B.; Chen, H. M.; Liu, C.; Andrews, S. C.; Hahn, C.; Yang, P. D. Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J. Am. Chem. Soc. 2013, 135, 9995–9998.

    Article  Google Scholar 

  44. [44]

    Sivula, K.; Le Formal, F.; Grätzel, M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 2011, 4, 432–449.

    Article  Google Scholar 

  45. [45]

    Bignozzi, C. A.; Caramori, S.; Cristino, V.; Argazzi, R.; Meda, L.; Tacca, A. Nanostructured photoelectrodes based on WO3: Applications to photooxidation of aqueous electrolytes. Chem. Soc. Rev. 2013, 42, 2228–2246.

    Article  Google Scholar 

  46. [46]

    Park, Y.; McDonald, K. J.; Choi, K.-S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 2013, 42, 2321–2337.

    Article  Google Scholar 

  47. [47]

    Brillet, J.; Grätzel, M.; Sivula, K. Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. Nano Lett. 2010, 10, 4155–4160.

    Article  Google Scholar 

  48. [48]

    Kay, A.; Cesar, I.; Grätzel, M. New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 2006, 128, 15714–15721.

    Article  Google Scholar 

  49. [49]

    Le Formal, F.; Grätzel, M.; Sivula, K. Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv. Funct. Mater. 2010, 20, 1099–1107.

    Article  Google Scholar 

  50. [50]

    Sivula, K.; Zboril, R.; Le Formal, F.; Robert, R.; Weidenkaff, A.; Tucek, J.; Frydrych, J.; Grätzel, M. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J. Am. Chem. Soc. 2010, 132, 7436–7444.

    Article  Google Scholar 

  51. [51]

    Tilley, S. D.; Cornuz, M.; Sivula, K.; Grätzel, M. Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 2010, 49, 6405–6408.

    Article  Google Scholar 

  52. [52]

    Liu, R.; Lin, Y. J.; Chou, L.-Y.; Sheehan, S. W.; He, W. S.; Zhang, F.; Hou, H. J. M.; Wang, D. W. Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. Angew. Chem. Int. Ed. 2011, 50, 499–502.

    Article  Google Scholar 

  53. [53]

    Ming, T.; Suntivich, J.; May, K. J.; Stoerzinger, K. A.; Kim, D. H.; Shao-Horn, Y. Visible light photo-oxidation in Au nanoparticle sensitized SrTiO3:Nb photoanode. J. Phys. Chem. C 2013, 117, 15532–15539.

    Article  Google Scholar 

  54. [54]

    Hassan, N. K.; Hashim, M. R.; Allam, N. K. ZnO nanotetrapod photoanodes for enhanced solar-driven water splitting. Chem. Phys. Lett. 2012, 549, 62–66.

    Article  Google Scholar 

  55. [55]

    Zhen, C.; Wang, L. Z.; Liu, G.; Lu, G. Q.; Cheng, H.-M. Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting. Chem. Commun. 2013, 49, 3019–3021.

    Article  Google Scholar 

  56. [56]

    Ling, Y. C.; Wang, G. M.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 2011, 11, 2119–2125.

    Article  Google Scholar 

  57. [57]

    Ye, H.; Park, H. S.; Bard, A. J. Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy. J. Phys. Chem. C 2011, 115, 12464–12470.

    Article  Google Scholar 

  58. [58]

    Park, H. S.; Lee, H. C.; Leonard, K. C.; Liu, G. J.; Bard, A. J. Unbiased photoelectrochemical water splitting in Z-scheme device using W/Mo-doped BiVO4 and ZnxCd1−x Se. ChemPhysChem 2013, 14, 2277–2287.

    Article  Google Scholar 

  59. [59]

    Holland, K.; Dutter, M. R.; Lawrence, D. J.; Reisner, B. A.; DeVore, T. C. Photoelectrochemical performance of W-doped BiVO4 thin films deposited by spray pyrolysis. J. Photonics Energy 2014, 4, 041598.

    Article  Google Scholar 

  60. [60]

    Zhou, M.; Bao, J.; Xu, Y.; Zhang, J. J.; Xie, J. F.; Guan, M. L.; Wang, C. L.; Wen, L. Y.; Lei, Y.; Xie, Y. Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting. ACS Nano 2014, 8, 7088–7098.

    Article  Google Scholar 

  61. [61]

    Song, X. C.; Yang, E.; Liu, G.; Zhang, Y.; Liu, Z. S.; Chen, H. F.; Wang, Y. Preparation and photocatalytic activity of Mo-doped WO3 nanowires. J. Nanopart. Res. 2010, 12, 2813–2819.

    Article  Google Scholar 

  62. [62]

    Cai, G.-F.; Wang, X.-L.; Zhou, D.; Zhang, J.-H.; Xiong, Q.-Q.; Gu, C.-D.; Tu, J.-P. Hierarchical structure Ti-doped WO3 film with improved electrochromism in visible-infrared region. RSC Adv. 2013, 3, 6896–6905.

    Article  Google Scholar 

  63. [63]

    Upadhyay, S. B.; Mishra, R. K.; Sahay, P. P. Structural and alcohol response characteristics of Sn-doped WO3 nanosheets. Sens. Actuators B 2014, 193, 19–27.

    Article  Google Scholar 

  64. [64]

    Guo, C. X.; Dong, Y. Q.; Yang, H. B.; Li, C. M. Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on F-doped SnO2 glass for enhanced photoelectrochemical water splitting. Adv. Energy Mater. 2013, 3, 997–1003.

    Article  Google Scholar 

  65. [65]

    Lin, Y.-G.; Hsu, Y.-K.; Chen, Y.-C.; Chen, L.-C.; Chen, S.-Y.; Chen, K.-H. Visible-light-driven photocatalytic carbon-doped porous ZnO nanoarchitectures for solar water-splitting. Nanoscale 2012, 4, 6515–6519.

    Article  Google Scholar 

  66. [66]

    Mayer, M. A.; Yu, K. M.; Speaks, D. T.; Denlinger, J. D.; Reichertz, L. A.; Beeman, J. W.; Haller, E. E.; Walukiewicz, W. Band gap engineering of oxide photoelectrodes: Characterization of ZnO1−x Sex. J. Phys. Chem. C 2012, 116, 15281–15289.

    Article  Google Scholar 

  67. [67]

    Yang, X. Y.; Wolcott, A.; Wang, G. M.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2009, 9, 2331–2336.

    Article  Google Scholar 

  68. [68]

    Cesar, I.; Kay, A.; Martinez, J. A. G.; Grätzel, M. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping. J. Am. Chem. Soc. 2006, 128, 4582–4583.

    Article  Google Scholar 

  69. [69]

    Hu, Y.-S.; Kleiman-Shwarsctein, A.; Forman, A. J.; Hazen, D.; Park, J.-N.; McFarland, E. W. Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mater. 2008, 20, 3803–3805.

    Article  Google Scholar 

  70. [70]

    Ingler, W. B.; Khan, S. U. M. Photoresponse of spray pyrolytically synthesized copper-doped p-Fe2O3 thin film electrodes in water splitting. Int. J. Hydrogen Energy 2005, 30, 821–827.

    Article  Google Scholar 

  71. [71]

    Kleiman-Shwarsctein, A.; Hu, Y.-S.; Forman, A. J.; Stucky, G. D.; McFarland, E. W. Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. C 2008, 112, 15900–15907.

    Article  Google Scholar 

  72. [72]

    Kumar, P.; Sharma, P.; Shrivastav, R.; Dass, S.; Satsangi, V. R. Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting. Int. J. Hydrogen Energy 2011, 36, 2777–2784.

    Article  Google Scholar 

  73. [73]

    Cho, I. S.; Lee, C. H.; Feng, Y. Z.; Logar, M.; Rao, P. M.; Cai, L. L.; Kim, D. R.; Sinclair, R.; Zheng, X. L. Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance. Nat. Commun. 2013, 4, 1723.

    Article  Google Scholar 

  74. [74]

    Zhou, J. K.; Zhang, Y. X.; Zhao, X. S.; Ray, A. K. Photodegradation of benzoic acid over metal-doped TiO2. Ind. Eng. Chem. Res. 2006, 45, 3503–3511.

    Article  Google Scholar 

  75. [75]

    Mayer, M. T.; Du, C.; Wang, D. W. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials. J. Am. Chem. Soc. 2012, 134, 12406–12409.

    Article  Google Scholar 

  76. [76]

    Shaner, M. R.; Fountaine, K. T.; Ardo, S.; Coridan, R. H.; Atwater, H. A.; Lewis, N. S. Photoelectrochemistry of core-shell tandem junction n-p+-Si/n-WO3 microwire array photoelectrodes. Energy Environ. Sci. 2014, 7, 779–790.

    Article  Google Scholar 

  77. [77]

    Coridan, R. H.; Arpin, K. A.; Brunschwig, B. S.; Braun, P. V.; Lewis, N. S. Photoelectrochemical behavior of hierarchically structured Si/WO3 core-shell tandem photoanodes. Nano Lett. 2014, 14, 2310–2317.

    Article  Google Scholar 

  78. [78]

    Liu, C.; Tang, J. Y.; Chen, H. M.; Liu, B.; Yang, P. D. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett. 2013, 13, 2989–2992.

    Article  Google Scholar 

  79. [79]

    Abdi, F. F.; Han, L. H.; Smets, A. H. M.; Zeman, M.; Dam, B.; van de Krol, R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 2013, 4, 2195.

    Article  Google Scholar 

  80. [80]

    Leroy, C. M.; Maegli, A. E.; Sivula, K.; Hisatomi, T.; Xanthopoulos, N.; Otal, E. H.; Yoon, S.; Weidenkaff, A.; Sanjines, R.; Grätzel, M. LaTiO2N/In2O3 photoanodes with improved performance for solar water splitting. Chem. Commun. 2012, 48, 820–822.

    Article  Google Scholar 

  81. [81]

    Patil, R.; Kelkar, S.; Naphadeab, R.; Ogale, S. Low temperature grown CuBi2O4 with flower morphology and its composite with CuO nanosheets for photoelectrochemical water splitting. J. Mater. Chem. A 2014, 2, 3661–3668.

    Article  Google Scholar 

  82. [82]

    AlOtaibi, B.; Nguyen, H. P.; Zhao, S.; Kibria, M. G.; Fan, S.; Mi, Z. Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode. Nano Lett. 2013, 13, 4356–4361.

    Article  Google Scholar 

  83. [83]

    Yokoyama, D.; Minegishi, T.; Jimbo, K.; Hisatomi, T.; Ma, G. J.; Katayama, M.; Kubota, J.; Katagiri, H.; Domen, K. H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light. Appl. Phys. Express 2010, 3, 101202.

    Article  Google Scholar 

  84. [84]

    Sun, Y. F.; Sun, Z. H.; Gao, S.; Cheng, H.; Liu, Q. H.; Lei, F. C.; Wei, S. Q.; Xie, Y. All-surface-atomic-metal chalcogenide sheets for high-efficiency visible-light photoelectrochemical water splitting. Adv. Energy Mater. 2014, 4, 1300611.

    Google Scholar 

  85. [85]

    Liu, J.; Li, X.-B.; Wang, D.; Liu, H.; Peng, P.; Liu, L.-M. Single-layer group-IVB nitride halides as promising photocatalysts. J. Mater. Chem. A 2014, 2, 6755–6761.

    Article  Google Scholar 

  86. [86]

    Li, W. Q.; Walther, C. F. J.; Kuc, A.; Heine, T. Density functional theory and beyond for band-gap screening: Performance for transition-metal oxides and dichalcogenides. J. Chem. Theory Comput. 2013, 9, 2950–2958.

    Article  Google Scholar 

  87. [87]

    Yourey, J. E.; Bartlett, B. M. Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for water oxidation. J. Mater. Chem. 2011, 21, 7651–7660.

    Article  Google Scholar 

  88. [88]

    Kato, M.; Yasuda, T.; Miyake, K.; Ichimura, M.; Hatayama, T. Epitaxial p-type SiC as a self-driven photocathode for water splitting. Int. J. Hydrogen Energy 2014, 39, 4845–4849.

    Article  Google Scholar 

  89. [89]

    Biswas, S. K.; Baeg, J.-O. Enhanced photoactivity of visible light responsive W incorporated FeVO4 photoanode for solar water splitting. Int. J. Hydrogen Energy 2013, 38, 14451–14457.

    Article  Google Scholar 

  90. [90]

    Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J. Phys. Chem. C 2008, 112, 747–753.

    Article  Google Scholar 

  91. [91]

    Hahn, N. T.; Hoang, S.; Self, J. L.; Mullins, C. B. Spray pyrolysis deposition and photoelectrochemical properties of n-type BiOI nanoplatelet thin films. ACS Nano 2012, 6, 7712–7722.

    Article  Google Scholar 

  92. [92]

    Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

    Article  Google Scholar 

  93. [93]

    Chen, S. Y.; Wang, L.-W. Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem. Mater. 2012, 24, 3659–3666.

    Article  Google Scholar 

  94. [94]

    Chen, Y. W.; Prange, J. D.; Dühnen, S.; Park, Y.; Gunji, M.; Chidsey, C. E. D.; McIntyre, P. C. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 2011, 10, 539–544.

    Article  Google Scholar 

  95. [95]

    Seger, B.; Pedersen, T.; Laursen, A. B.; Vesborg, P. C. K.; Hansen, O.; Chorkendorff, I. Using TiO2 as a conductive protective layer for photocathodic H2 evolution. J. Am. Chem. Soc. 2013, 135, 1057–1064.

    Article  Google Scholar 

  96. [96]

    Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

    Article  Google Scholar 

  97. [97]

    Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

    Article  Google Scholar 

  98. [98]

    Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. L. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, 2515–2525.

    Article  Google Scholar 

  99. [99]

    Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.

    Article  Google Scholar 

  100. [100]

    McKone, J. R.; Sadtler, B. F.; Werlang, C. A.; Lewis, N. S.; Gray, H. B. Ni-Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 2013, 3, 166–169.

    Article  Google Scholar 

  101. [101]

    Parsons, R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 1958, 54, 1053–1063.

    Article  Google Scholar 

  102. [102]

    Boettcher, S. W.; Warren, E. L.; Putnam, M. C.; Santori, E. A.; Turner-Evans, D.; Kelzenberg, M. D.; Walter, M. G.; McKone, J. R.; Brunschwig, B. S.; Atwater, H. A. et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 2011, 133, 1216–1219.

    Article  Google Scholar 

  103. [103]

    Dasgupta, N. P.; Liu, C.; Andrews, S.; Prinz, F. B.; Yang, P. D. Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. J. Am. Chem. Soc. 2013, 135, 12932–12935.

    Article  Google Scholar 

  104. [104]

    Dai, P. C.; Xie, J.; Mayer, M. T.; Yang, X. G.; Zhan, J. H.; Wang, D. W. Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition. Angew. Chem. Int. Ed. 2013, 52, 11119–11123.

    Article  Google Scholar 

  105. [105]

    Kye, J.; Shin, M.; Lim, B.; Jang, J. W.; Oh, I.; Hwang, S. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution. ACS Nano 2013, 7, 6017–6023.

    Article  Google Scholar 

  106. [106]

    Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 2011, 10, 456–461.

    Article  Google Scholar 

  107. [107]

    Dai, P. C.; Li, W.; Xie, J.; He, Y. M.; Thorne, J.; McMahon, G.; Zhan, J. H.; Wang, D. W. Forming buried junctions to enhance photovoltage by cuprous oxide in aqueous solutions. Angew. Chem. Int. Ed. 2014, 53, 13493–13497.

    Article  Google Scholar 

  108. [108]

    Kim, J.; Minegishi, T.; Kobota, J.; Domen, K. Investigation of Cu-deficient copper gallium selenide thin film as a photocathode for photoelectrochemical water splitting. Jpn. J. Appl. Phys. 2012, 51, 015802.

    Article  Google Scholar 

  109. [109]

    Gunawan; Septina, W.; Ikeda, S.; Harada, T.; Minegishi, T.; Domen, K.; Matsumura, M. Platinum and indium sulfide-modified CuInS2 as efficient photocathodes for photoelectrochemical water splitting. Chem. Commun. 2014, 50, 8941–8943.

    Article  Google Scholar 

  110. [110]

    Baglio, J. A.; Calabrese, G. S.; Harrison, D. J.; Kamieniecki, E.; Ricco, A. J.; Wrighton, M. S.; Zoski, G. D. Electrochemical characterization of p-type semiconducting tungsten disulfide photocathodes: Efficient photoreduction processes at semiconductor/liquid electrolyte interfaces. J. Am. Chem. Soc. 1983, 105, 2246–2256.

    Article  Google Scholar 

  111. [111]

    Hou, Y. D.; Abrams, B. L.; Vesborg, P. C. K.; Björketun, M. E.; Herbst, K.; Bech, L.; Setti, A. M.; Damsgaard, C. D.; Pedersen, T.; Hansen, O. et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 2011, 10, 434–438.

    Article  Google Scholar 

  112. [112]

    Huang, Z. P.; Chen, Z. B.; Chen, Z. Z.; Lv, C. C.; Meng, H.; Zhang, C. Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 2014, 8, 8121–8129.

    Article  Google Scholar 

  113. [113]

    Warren, E. L.; McKone, J. R.; Atwater, H. A.; Gray, H. B.; Lewis, N. S. Hydrogen-evolution characteristics of Ni-Mo-coated, radial junction, n+p-silicon microwire array photocathodes. Energy Environ. Sci. 2012, 5, 9653–9661.

    Article  Google Scholar 

  114. [114]

    Lin, Y. J.; Battaglia, C.; Boccard, M.; Hettick, M.; Yu, Z.; Ballif, C.; Ager, J. W.; Javey, A. Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. Nano Lett. 2013, 13, 5615–5618.

    Article  Google Scholar 

  115. [115]

    Huang, Z. P.; Wang, C. F.; Chen, Z. B.; Meng, H.; Lv, C. C.; Chen, Z. Z.; Han, R. Q.; Zhang, C. Tungsten sulfide enhancing solar-driven hydrogen production from silicon nanowires. ACS Appl. Mater. Interfaces 2014, 6, 10408–10414.

    Article  Google Scholar 

  116. [116]

    Seger, B.; Laursen, A. B.; Vesborg, P. C. K.; Pedersen, T.; Hansen, O.; Dahl, S.; Chorkendorff, I. Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode. Angew. Chem. Int. Ed. 2012, 51, 9128–9131.

    Article  Google Scholar 

  117. [117]

    Lin, C.-Y.; Lai, Y.-H.; Mersch, D.; Reisner, E. Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chem. Sci. 2012, 3, 3482–3487.

    Article  Google Scholar 

  118. [118]

    Morales-Guio, C. G.; Tilley, S. D.; Vrubel, H.; Grätzel, M.; Hu, X. L. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. 2014, 5, 3059.

    Article  Google Scholar 

  119. [119]

    Tilley, S. D.; Schreier, M.; Azevedo, J.; Stefik, M.; Graetzel, M. Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes. Adv. Funct. Mater. 2014, 24, 303–311.

    Article  Google Scholar 

  120. [120]

    Benck, J. D.; Lee, S. C.; Fong, K. D.; Kibsgaard, J.; Sinclair, R.; Jaramillo, T. F. Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials. Adv. Energy Mater., in press, DOI: 10.1002/aenm.201400739.

  121. [121]

    Rasiyah, P.; Tseung, A. C. C. The role of the lower metal oxide/higher metal oxide couple in oxygen evolution reactions. J. Electrochem. Soc. 1984, 131, 803–808.

    Article  Google Scholar 

  122. [122]

    Esswein, A. J.; Surendranath, Y.; Reece, S. Y.; Nocera, D. G. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters. Energy Environ. Sci. 2011, 4, 499–504.

    Article  Google Scholar 

  123. [123]

    Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63.

    Article  Google Scholar 

  124. [124]

    Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414, 625–627.

    Article  Google Scholar 

  125. [125]

    Sun, K.; Pang, X. L.; Shen, S. H.; Qian, X. Q.; Cheung, J. S.; Wang, D. L. Metal oxide composite enabled nanotextured Si photoanode for efficient solar driven water oxidation. Nano Lett. 2013, 13, 2064–2072.

    Article  Google Scholar 

  126. [126]

    Hoang, S.; Guo, S. W.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett. 2012, 12, 26–32.

    Article  Google Scholar 

  127. [127]

    Diab, M.; Mokari, T. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation. Inorg. Chem. 2014, 53, 2304–2309.

    Article  Google Scholar 

  128. [128]

    Lichterman, M. F.; Shaner, M. R.; Handler, S. G.; Brunschwig, B. S.; Gray, H. B.; Lewis, N. S.; Spurgeon, J. M. Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition. J. Phys. Chem. Lett. 2013, 4, 4188–4191.

    Article  Google Scholar 

  129. [129]

    Liu, G. J.; Shi, J. Y.; Zhang, F. X.; Chen, Z.; Han, J. F.; Ding, C. M.; Chen, S. S.; Wang, Z. L.; Han, H. X.; Li, C. A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting. Angew. Chem. Int. Ed. 2014, 53, 7295–7299.

    Article  Google Scholar 

  130. [130]

    Kim, J. Y.; Magesh, G.; Youn, D. H.; Jang, J. W.; Kubota, J.; Domen, K.; Lee, J. S. Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci. Rep. 2013, 3, 2681.

    Google Scholar 

  131. [131]

    Qiu, Y. C.; Leung, S.-F.; Zhang, Q. P.; Hua, B.; Lin, Q. F.; Wei, Z. H.; Tsui, K.-H.; Zhang, Y. G.; Yang, S. H.; Fan, Z. Y. Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures. Nano Lett. 2014, 14, 2123–2129.

    Article  Google Scholar 

  132. [132]

    Li, Y. B.; Zhang, L.; Torres-Pardo, A.; González-Calbet, J. M.; Ma, Y. H.; Oleynikov, P.; Terasaki, O.; Asahina, S.; Shima, M.; Cha, D. et al. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat. Commun. 2013, 4, 2566.

    Google Scholar 

  133. [133]

    Abdi, F. F.; Firet, N.; van de Krol, R. Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping. ChemCatChem 2013, 5, 490–496.

    Article  Google Scholar 

  134. [134]

    Kim, T. W.; Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994.

    Article  Google Scholar 

  135. [135]

    Strandwitz, N. C.; Comstock, D. J.; Grimm, R. L.; Nichols-Nielander, A. C.; Elam, J.; Lewis, N. S. Photoelectrochemical behavior of n-type Si(100) electrodes coated with thin films of manganese oxide grown by atomic layer deposition. J. Phys. Chem. C 2013, 117, 4931–4936.

    Article  Google Scholar 

  136. [136]

    Du, C.; Yang, X. G.; Mayer, M. T.; Hoyt, H.; Xie, J.; McMahon, G.; Bischoping, G.; Wang, D. W. Hematite-based water splitting with low turn-on voltages. Angew. Chem. Int. Ed. 2013, 52, 12692–12695.

    Article  Google Scholar 

  137. [137]

    Chemelewski, W. D.; Lee, H.-C.; Lin, J. F.; Bard, A. J.; Mullins, C. B. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Am. Chem. Soc. 2014, 136, 2843–2850.

    Article  Google Scholar 

  138. [138]

    Klepser, B. M.; Bartlett, B. M. Anchoring a molecular iron catalyst to solar-responsive WO3 improves the rate and selectivity of photoelectrochemical water oxidation. J. Am. Chem. Soc. 2014, 136, 1694–1697.

    Article  Google Scholar 

  139. [139]

    Cox, C. R.; Winkler, M. T.; Pijpers, J. J. H.; Buonassisi, T.; Nocera, D. G. Interfaces between water splitting catalysts and buried silicon junctions. Energy Environ. Sci. 2013, 6, 532–538.

    Article  Google Scholar 

  140. [140]

    Bard, A. J.; Bocarsly, A. B.; Fan, F. R. F.; Walton, E. G.; Wrighton, M. S. The concept of Fermi level pinning at semiconductor-liquid junctions. Consequences for energy-conversion efficiency and selection of useful solution redox couples in solar devices. J. Am. Chem. Soc. 1980, 102, 3671–3677.

    Article  Google Scholar 

  141. [141]

    Yang, X. G.; Du, C.; Liu, R.; Xie, J.; Wang, D. W. Balancing photovoltage generation and charge-transfer enhancement for catalyst-decorated photoelectrochemical water splitting: A case study of the hematite/MnOx combination. J. Catal. 2013, 304, 86–91.

    Article  Google Scholar 

  142. [142]

    Trotochaud, L.; Mills, T. J.; Boettcher, S. W. An optocatalytic model for semiconductor-catalyst water-splitting photoelectrodes based on in situ optical measurements on operational catalysts. J. Phys. Chem. Lett. 2013, 4, 931–935.

    Article  Google Scholar 

  143. [143]

    Mei, B.; Permyakova, A. A.; Frydendal, R.; Bae, D.; Pedersen, T.; Malacrida, P.; Hansen, O.; Stephens, I. E. L.; Vesborg, P. C. K.; Seger, B. et al. Iron-treated NiO as a highly transparent p-type protection layer for efficient Si-based photoanodes. J. Phys. Chem. Lett. 2014, 5, 3456–3461.

    Article  Google Scholar 

  144. [144]

    Luo, J. S.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth abundant catalysts. Science 2014, 345, 1593–1596.

    Article  Google Scholar 

  145. [145]

    Cox, C. R.; Lee, J. Z.; Nocera, D. G.; Buonassisi, T. Ten-percent solar-to-fuel conversion with nonprecious materials. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 14057–14061.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiaogang Yang or Dunwei Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Liu, R., He, Y. et al. Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials. Nano Res. 8, 56–81 (2015). https://doi.org/10.1007/s12274-014-0645-2

Download citation

Keywords

  • photoelectrochemical water splitting
  • efficiency
  • stability
  • interface
  • earth abundance