Skip to main content

Principles of Photoelectrochemical Cells

  • Chapter
  • First Online:
Photoelectrochemical Hydrogen Production

Part of the book series: Electronic Materials: Science & Technology ((EMST,volume 102))

Abstract

In this chapter, the basic principles of photoelectrochemical water splitting are reviewed. After a brief introduction of the photoelectrochemical cell and the electrochemical reactions involved, the electronic structure and properties of semiconductors are discussed. The emphasis is on metal oxide semiconductors, and special attention is given to the presence of ionic point defects in these materials. This is followed by a closer look at the semiconductor/electrolyte interface. The energy conversion efficiency and different definitions of the quantum efficiency are treated next. The chapter concludes with a brief outline of the material’s requirements and challenges facing the development of highly efficient photoelectrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the sign of the potential for the oxidation half-reactions is opposite from that usually encountered in the literature, which usually lists these reactions as reduction reactions.

  2. 2.

    The valence band of a semiconductor is analogous to the highest occupied molecular orbital (HOMO) in a molecule, whereas the conduction band is the solid state analogue of the lowest unoccupied molecular orbital (LUMO).

  3. 3.

    An example of a native substituent is a site exchange of A and B cations in a ternary compound such as AB x O y .

  4. 4.

    An “aliovalent” dopant has different charge than the ion that it replaces.

  5. 5.

    Anion interstitials normally only occur in oxides with the fluorite structure, which can be viewed as an fcc base lattice of cations in which the interstitial sites are occupied by anions.

  6. 6.

    Note that the octahedrally coordinated Bi sites (103 pm) are clearly too large for W, and would cause the W6+ to “rattle,” which is energetically very unfavorable.

  7. 7.

    monolayer (ML) corresponds to ~1015 atoms/cm2.

  8. 8.

    “Amphoteric” means that the semiconductor surface can either donate or accept a proton, i.e., it can act both as a Brønsted acid and as a Brønsted base.

  9. 9.

    Note that in highly doped semiconductors (>1019 cm−3) and metals, C SC can exceed C H so that any change in the applied potential will fall across the Helmholtz layer instead of the depletion layer.

References

  1. Chelikowsky, J.R., Cohen, M.L.: Electronic-structure of silicon. Phys. Rev. B 10, 5095–5107 (1974)

    Article  Google Scholar 

  2. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  Google Scholar 

  3. Osterloh, F.E.: Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20, 35–54 (2008)

    Article  Google Scholar 

  4. Stoyanov, E., Langenhorst, F., Steinle-Neumann, G.: The effect of valence state and site geometry on Ti L-3, L-2 and O-K electron energy-loss spectra of Ti x O y phases. Am. Miner. 92, 577–586 (2007)

    Article  Google Scholar 

  5. Fischer, D.W.: X-ray band spectra and molecular-orbital structure of rutile TiO2. Phys. Rev. B 5, 4219 (1972)

    Article  Google Scholar 

  6. Hoffmann, R.: Solids and Surfaces – A Chemist’s View of Bonding in Extended Structures. Wiley-VCH, Weinheim (1988)

    Google Scholar 

  7. Tauc, J., Grigorov, R., Vancu, A.: Optical properties and electronic structure of amorphous germanium. Phys. Stat. Sol. 15, 627 (1966)

    Article  Google Scholar 

  8. Sze, S.M.: Physics of Semiconductor Devices. Wiley, New York (1981)

    Google Scholar 

  9. Brus, L.E.: Electron electron and electron–hole interactions in small semiconductor crystallites – the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984)

    Article  Google Scholar 

  10. Deskins, N.A., Dupuis, M.: Intrinsic hole migration rates in TiO2 from density functional theory. J. Phys. Chem. C 113, 346–358 (2009)

    Article  Google Scholar 

  11. Enright, B., Fitzmaurice, D.: Spectroscopic determination of electron and hole effective masses in a nanocrystalline semiconductor film. J. Phys. Chem. 100, 1027–1035 (1996)

    Article  Google Scholar 

  12. Berak, J.M., Sienko, M.J.: Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals. J. Solid State Chem. 2, 109–133 (1970)

    Article  Google Scholar 

  13. Bosman, A.J., Vandaal, H.J.: Small-polaron versus band conduction in some transition-metal oxides. Adv. Phys. 19, 1 (1970)

    Article  Google Scholar 

  14. Matsuzaki, K., Nomura, K., Yanagi, H., Kamiya, T., Hirano, M., Hosono, H.: Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor. Appl. Phys. Lett. 93, 202107 (2008)

    Article  Google Scholar 

  15. Kawazoe, H., Yasukawa, M., Hyodo, H., Kurita, M., Yanagi, H., Hosono, H.: P-type electrical conduction in transparent thin films of CuAlO2. Nature 389, 939–942 (1997)

    Article  Google Scholar 

  16. Kudo, A., Yanagi, H., Hosono, H., Kawazoe, H.: SrCu2O2: a p-type conductive oxide with wide band gap. Appl. Phys. Lett. 73, 220–222 (1998)

    Article  Google Scholar 

  17. Bessekhouad, Y., Gabes, Y., Bouguelia, A., Trari, M.: The physical and photo electrochemical characterization of the crednerite CuMnO2. J. Mater. Sci. 42, 6469–6476 (2007)

    Article  Google Scholar 

  18. Pierret, R.F.: Advanced semiconductor fundamentals. Addison-Wesley, Reading (1989)

    Google Scholar 

  19. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.: Photocatalysts sensitive to visible light – response. Science 295, 627–627 (2002)

    Article  Google Scholar 

  20. Maruska, H.P., Ghosh, A.K.: Transition-metal dopants for extending the response of titanate photoelectrolysis anodes. Solar Energy Mater. 1, 237–247 (1979)

    Article  Google Scholar 

  21. Salvador, P.: Analysis of the physical properties of TiO2-Be electrodes in the photoassisted oxidation of water. Solar Energy Mater. 6, 241–250 (1982)

    Article  Google Scholar 

  22. Henrich, V.E., Cox, P.A.: The surface science of metal oxides. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  23. Kato, H., Kudo, A.: Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J. Phys. Chem. B 106, 5029–5034 (2002)

    Article  Google Scholar 

  24. Howe, A.T., Hawkins II, R.T., Fleisch, T.H.: Photoelectrochemical cells of the electrolyte–metal–insulator–semiconductor (EMIS) configuration. I. Metal thickness and coverage effects in the Pt/silicon oxide/n-Si system. J. Electrochem. Soc. 133, 1369–1375 (1986)

    Article  Google Scholar 

  25. Piazza, F., Pavesi, L., Henini, M., Johnston, D.: Effect of as overpressure on Si-doped (111) a gaas grown by molecular-beam epitaxy – a photoluminescence study. Semicond. Sci. Technol. 7, 1504–1507 (1992)

    Article  Google Scholar 

  26. Kröger, F.A.: The chemistry of imperfect crystals. North-Holland Publishing Co., Amsterdam (1964)

    Google Scholar 

  27. Chiang, Y.-M., Birnie III, D., Kingery, D.W.: Physical Ceramics. Wiley, New York (1997)

    Google Scholar 

  28. Smyth, D.M.: The Defect Chemistry of Metal Oxides. Oxford University Press, New York (2000)

    Google Scholar 

  29. Jorand Sartoretti, C., Alexander, B.D., Solarska, R., Rutkowska, W.A., Augustynski, J., Cerny, R.: Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. J. Phys. Chem. B 109, 13685–13692 (2005)

    Article  Google Scholar 

  30. Liang, Y., Enache, C.S., Van de Krol, R.: Photoelectrochemical characterization of sprayed α-Fe2O3 thin films: Influence of Si-doping and SnO2 interfacial layer. Int. J. Photoenergy (2008). doi:10.1155/2008/739864

  31. Kennedy, J.H., Shinar, R., Ziegler, J.P.: Alpha-Fe2O3 photoanodes doped with silicon. J. Electrochem. Soc. 127, 2307–2309 (1980)

    Article  Google Scholar 

  32. Liang, Y., Tsubota, T., Mooij, L.P.A., van de Krol, R.: Highly improved quantum efficiencies for thin film BiVO4 photoanodes. J. Phys. Chem. C 115, 17594–17598 (2011)

    Google Scholar 

  33. Das Mulmi, D., Sekiya, T., Kamiya, N., Kurita, S., Murakami, Y., Kodaira, T.: Optical and electric properties of Nb-doped anatase TiO2 single crystal. J. Phys. Chem. Solids 65, 1181–1185 (2004)

    Article  Google Scholar 

  34. Anpo, M., Takeuchi, M.: The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 216, 505–516 (2003)

    Article  Google Scholar 

  35. Kudo, A., Ueda, K., Kato, H., Mikami, I.: Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal. Lett. 53, 229–230 (1998)

    Article  Google Scholar 

  36. Sayama, K., Nomura, A., Arai, T., Sugita, T., Abe, R., Yanagida, M., Oi, T., Iwasaki, Y., Abe, Y., Sugihara, H.: Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. J. Phys. Chem. B 110, 11352–11360 (2006)

    Article  Google Scholar 

  37. Pierret, R.F.: Semiconductor Device Fundamentals. Addison Wesley, Reading (1996)

    Google Scholar 

  38. Nicollian, E.H., Brews, J.R.: MOS (metal oxide semiconductor) Physics and Technology. Wiley, Hoboken (2003)

    Google Scholar 

  39. Onari, S., Arai, T., Kudo, K.: Ir lattice-vibrations and dielectric-dispersion in alpha-Fe2O3. Phys. Rev. B 16, 1717–1721 (1977)

    Article  Google Scholar 

  40. Rosso, K.M., Smith, D.M.A., Dupuis, M.: An ab initio model of electron transport in hematite (alpha-Fe2O3) basal planes. J. Chem. Phys. 118, 6455–6466 (2003)

    Article  Google Scholar 

  41. Morrison, S.R.: Electrochemistry of semiconductor and oxidized metal electrodes. Plenum, New York (1980)

    Book  Google Scholar 

  42. Bockris, J.O.M., Reddy, A.K.N., Galboa-Aldeco, M.E.: Modern Electrochemistry 2A – Fundamentals of Electrodics. Springer, New York (2001)

    Google Scholar 

  43. Memming, R.: Semiconductor Electrochemistry. Wiley, New York (2000)

    Book  Google Scholar 

  44. McNaught, A.D., Wilkinson, A.: IUPAC Compendium of Chemical Terminology, 2nd edn. (the “Gold Book”). Blackwell Scientific Publications, Oxford (1997). http://goldbook.iupac.org/S05917.html. Accessed 8 Sep 2010

  45. Reichman, J.: The current–voltage characteristics of semiconductor-electrolyte junction photo-voltaic cells. Appl. Phys. Lett. 36, 574–577 (1980)

    Article  Google Scholar 

  46. Peter, L.M., Li, J., Peat, R.: Surface recombination at semiconductor electrodes. 1. Transient and steady-state photocurrents. J. Electroanal. Chem. 165, 29–40 (1984)

    Article  Google Scholar 

  47. Gandia, J., Pujadas, M., Salvador, P.: Electrolyte electroreflectance – easy and reliable flat-band potential measurements. J. Electroanal. Chem. 244, 69–79 (1988)

    Article  Google Scholar 

  48. Radecka, M., Sobas, P., Wimbicka, M., Rekas, M.: Photoelectrochemical properties of undoped and Ti-doped WO3. Phys. B Condens. Matter 364, 85–92 (2005)

    Article  Google Scholar 

  49. Hagfeldt, A., Björksten, U., Grätzel, M.: Photocapacitance of nanocrystalline oxide semiconductor films: band-edge movement in mesoporous TiO2 electrodes during UV illumination. J. Phys. Chem. 100, 8045–8048 (1996)

    Article  Google Scholar 

  50. Hwang, Y.J., Boukai, A., Yang, P.D.: High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett. 9, 410–415 (2009)

    Article  Google Scholar 

  51. Marcus, R.A.: Theory of oxidation–reduction reactions involving electron transfer 1. J. Chem. Phys. 24, 966–978 (1956)

    Article  Google Scholar 

  52. Marcus, R.A.: Chemical + electrochemical electron-transfer theory. Ann. Rev. Phys. Chem. 15, 155 (1964)

    Article  Google Scholar 

  53. Gerischer, H.: Charge transfer processes at semiconductor-electrolyte interfaces in connection with problems of catalysis. Surf. Sci. 18, 97 (1969)

    Article  Google Scholar 

  54. Duret, A., Grätzel, M.: Visible light-induced water oxidation on mesoscopic alpha-Fe2O3 films made by ultrasonic spray pyrolysis. J. Phys. Chem. B 109, 17184–17191 (2005)

    Article  Google Scholar 

  55. Jarrett, H.S.: Photocurrent conversion efficiency in a Schottky-barrier. J. Appl. Phys. 52, 4681–4689 (1981)

    Article  Google Scholar 

  56. Wilson, R.H.: Model for current–voltage curve of photoexcited semiconductor electrodes. J. Appl. Phys. 48, 4292–4297 (1977)

    Article  Google Scholar 

  57. Salvador, P.: Kinetic approach to the photocurrent transients in water photoelectrolysis at n-TiO2 electrodes. I. Analysis of the ratio of the instantaneous to steady-state photocurrent. J. Phys. Chem. 89, 3863–3869 (1985)

    Article  Google Scholar 

  58. Kisumi, T., Tsujiko, A., Murakoshi, K., Nakato, Y.: Crystal-face and illumination intensity dependences of the quantum efficiency of photoelectrochemical etching, in relation to those of water photooxidation, at n-TiO2 (rutile) semiconductor electrodes. J. Electroanal. Chem. 545, 99–107 (2003)

    Article  Google Scholar 

  59. Imanishi, A., Okamura, T., Ohashi, N., Nakamura, R., Nakato, Y.: Mechanism of water photooxidation reaction at atomically flat TiO2 (rutile) (110) and (100) surfaces: dependence on solution pH. J. Am. Chem. Soc. 129, 11569–11578 (2007)

    Article  Google Scholar 

  60. Rossmeisl, J., Qu, Z.W., Zhu, H., Kroes, G.J., Norskov, J.K.: Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007)

    Article  Google Scholar 

  61. Valdes, A., Qu, Z.W., Kroes, G.J., Rossmeisl, J., Norskov, J.K.: Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C 112, 9872–9879 (2008)

    Article  Google Scholar 

  62. Valdes, A., Kroes, G.J.: First principles study of the photo-oxidation of water on tungsten trioxide (WO3). J. Chem. Phys. 130(11), 114701 (2009)

    Article  Google Scholar 

  63. Harriman, A., Pickering, I.J., Thomas, J.M., Christensen, P.A.: Metal-oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J. Chem. Soc. Faraday Trans. I 84, 2795–2806 (1988)

    Article  Google Scholar 

  64. Kanan, M.W., Nocera, D.G.: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008)

    Article  Google Scholar 

  65. Jiao, F., Frei, H.: Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew. Chem. Int. Ed. 48, 1841–1844 (2009)

    Article  Google Scholar 

  66. Kay, A., Cesar, I., Grätzel, M.: New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)

    Article  Google Scholar 

  67. Van Dorp, D.H., Hijnen, N., Di Vece, M., Kelly, J.J.: SiC: a photocathode for water splitting and hydrogen storage. Angew. Chem. Int. Ed. 48, 6085–6088 (2009)

    Article  Google Scholar 

  68. De Jongh, P.E., Vanmaekelbergh, D., Kelly, J.J.: Photoelectrochemistry of electrodeposited Cu2O. J. Electrochem. Soc. 147, 486–489 (2000)

    Article  Google Scholar 

  69. Rajeshwar, K., McConnell, R., Licht, S.: Solar hydrogen generation – toward a renewable energy future. Springer, New York (2008)

    Google Scholar 

  70. Bak, T., Nowotny, J., Rekas, M., Sorrell, C.C.: Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrogen Energy 27, 991–1022 (2002)

    Article  Google Scholar 

  71. Park, S.M., Barber, M.E.: Thermodynamic stabilities of semiconductor electrodes. J. Electroanal. Chem. 99, 67–75 (1979)

    Article  Google Scholar 

  72. Scaife, D.E.: Oxide semiconductors in photoelectrochemical conversion of solar energy. Solar Energy 25, 41–54 (1980)

    Article  Google Scholar 

  73. Kudo, A., Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)

    Article  Google Scholar 

  74. Ritterskamp, P., Kuklya, A., Wustkamp, M.A., Kerpen, K., Weidenthaler, C., Demuth, M.: A titanium disilicide derived semiconducting catalyst for water splitting under solar radiation – reversible storage of oxygen and hydrogen. Angew. Chem. Int. Ed. 46, 7770–7774 (2007)

    Article  Google Scholar 

  75. Solar Irradiance Data, ASTM-G173-03 (AM1.5, global tilt): http://rredc.nrel.gov/solar/spectra/am1.5/. Accessed 11 Aug 2010

  76. Chen, Z.B., Jaramillo, T.F., Deutsch, T.G., Kleiman-Shwarsctein, A., Forman, A.J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E.W., Domen, K., Miller, E.L., Turner, J.A., Dinh, H.N.: Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010)

    Article  Google Scholar 

  77. Murphy, A.B., Barnes, P.R.F., Randeniya, L.K., Plumb, I.C., Grey, I.E., Horne, M.D., Glasscock, J.A.: Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 31, 1999–2017 (2006)

    Article  Google Scholar 

  78. Santato, C., Ulmann, M., Augustynski, J.: Enhanced visible light conversion efficiency using nanocrystalline WO3 films. Adv. Mater. 13, 511 (2001)

    Article  Google Scholar 

  79. Kavan, L., Grätzel, M.: Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis. Electrochim. Acta 40, 643–652 (1995)

    Article  Google Scholar 

  80. De Jongh, P.E., Vanmaekelbergh, D.: Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles. Phys. Rev. Lett. 77, 3427–3430 (1996)

    Article  Google Scholar 

  81. Van de Krol, R., Liang, Y.Q., Schoonman, J.: Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18, 2311–2320 (2008)

    Article  Google Scholar 

  82. Weber, M.F., Dignam, M.J.: Splitting water with semiconducting photoelectrodes efficiency considerations. Int. J. Hydrogen Energy 11, 225–232 (1986)

    Article  Google Scholar 

  83. Bolton, J.R., Strickler, S.J., Connolly, J.S.: Limiting and realizable efficiencies of solar photolysis of water. Nature 316, 495–500 (1985)

    Article  Google Scholar 

  84. Gerischer, H.: Electrochemical behavior of semiconductors under illumination. J. Electrochem. Soc. 113, 1174 (1966)

    Article  Google Scholar 

  85. Weber, M.F., Dignam, M.J.: Efficiency of splitting water with semiconducting photoelectrodes. J. Electrochem. Soc. 131, 1258–1265 (1984)

    Article  Google Scholar 

  86. Liang, Y., Enache, C.S., Van de Krol, R.: Photoelectrochemical characterization of sprayed α-Fe2O3 thin films: Influence of Si-doping and SnO2 interfacial layer. Int. J. Photoenergy (2008). doi:10.1155/2008/739864

  87. Licht, S., Wang, B., Mukerji, S., Soga, T., Umeno, M., Tributsch, H.: Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 104, 8920–8924 (2000)

    Article  Google Scholar 

  88. Youngblood, W.J., Lee, S.H.A., Kobayashi, Y., Hernandez-Pagan, E.A., Hoertz, P.G., Moore, T.A., Moore, A.L., Gust, D., Mallouk, T.E.: Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J. Am. Chem. Soc. 131, 926 (2009)

    Article  Google Scholar 

  89. Maeda, K., Teramura, K., Lu, D.L., Takata, T., Saito, N., Inoue, Y., Domen, K.: Photocatalyst releasing hydrogen from water – enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440, 295–295 (2006)

    Article  Google Scholar 

  90. Kato, H., Asakura, K., Kudo, A.: Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 125, 3082–3089 (2003)

    Article  Google Scholar 

  91. Grätzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001)

    Article  Google Scholar 

  92. Mor, G.K., Prakasam, H.E., Varghese, O.K., Shankar, K., Grimes, C.A.: Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett. 7, 2356–2364 (2007)

    Article  Google Scholar 

  93. Sivula, K., Le Formal, F., Grätzel, M.: WO3–Fe2O3 photoanodes for water splitting: a host scaffold guest absorber approach. Chem. Mater. 21, 2862–2867 (2009)

    Article  Google Scholar 

  94. Cesar, I., Kay, A., Martinez, J.A.G., Grätzel, M.: Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. J. Am. Chem. Soc. 128, 4582–4583 (2006)

    Article  Google Scholar 

  95. Brus, L.: Electronic wave-functions in semiconductor clusters – experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986)

    Article  Google Scholar 

  96. Vayssieres, L., Sathe, C., Butorin, S.M., Shuh, D.K., Nordgren, J., Guo, J.H.: One-dimensional quantum-confinement effect in alpha-Fe2O3 ultrafine nanorod arrays. Adv. Mater. 17, 2320 (2005)

    Article  Google Scholar 

  97. Lin, K.F., Cheng, H.M., Hsu, H.C., Lin, L.J., Hsieh, W.F.: Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method. Chem. Phys. Lett. 409, 208–211 (2005)

    Article  Google Scholar 

  98. Goossens, A.: Potential distribution in semiconductor particles. J. Electrochem. Soc. 143, L131–L133 (1996)

    Article  Google Scholar 

  99. Mavroides, J.G., Kafalas, J.A., Kolesar, D.F.: Photoelectrolysis of water in cells with SrTiO3 anodes. Appl. Phys. Lett. 28, 241–243 (1976)

    Article  Google Scholar 

  100. Schoppel, H.R., Gerischer, H.: Cathodic reduction of Cu-I oxide electrodes as example for reduction mechanism of semiconductor crystal. Ber. Bunsenges. Phys. Chem. 75, 1237 (1971)

    Google Scholar 

  101. Nagasubramanian, G., Gioda, A.S., Bard, A.J.: Semiconductor electrodes. 37. Photoelectrochemical behavior of p-type Cu2O in acetonitrile solutions. J. Electrochem. Soc. 128, 2158–2164 (1981)

    Article  Google Scholar 

  102. Hara, M., Kondo, T., Komoda, M., Ikeda, S., Shinohara, K., Tanaka, A., Kondo, J.N., Domen, K.: Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun. 3, 357–358 (1998)

    Article  Google Scholar 

  103. Khaselev, O., Turner, J.A.: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998)

    Article  Google Scholar 

  104. Grätzel, M.: Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem. Lett. 34, 8–13 (2005)

    Article  Google Scholar 

  105. Brillet, J., Cornuz, M., Le Formal, F., Yum, J.H., Grätzel, M., Sivula, K.: Examining architectures of photoanode-photovoltaic tandem cells for solar water splitting. J. Mater. Res. 25, 17–24 (2010)

    Article  Google Scholar 

  106. Nozik, A.J.: p–n photoelectrolysis cells. Appl. Phys. Lett. 29, 150–153 (1976)

    Article  Google Scholar 

  107. Turner, J.E., Hendewerk, M., Somorjai, G.A.: The photodissociation of water by doped iron-oxides – the unbiased P/N assembly. Chem. Phys. Lett. 105, 581–585 (1984)

    Article  Google Scholar 

  108. Kohl, P.A., Frank, S.N., Bard, A.J.: Semiconductor electrodes. 11. Behavior of n-type and p-type single-crystal semiconductors covered with thin normal-TiO2 films. J. Electrochem. Soc. 124, 225–229 (1977)

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges Fatwa F. Abdi for critical reading of the manuscript, and the NWO-ACTS Sustainable Hydrogen program (project 053.61.009) and the European Commission’s Framework 7 program (NanoPEC, Project 227179) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roel van de Krol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

van de Krol, R. (2012). Principles of Photoelectrochemical Cells. In: van de Krol, R., Grätzel, M. (eds) Photoelectrochemical Hydrogen Production. Electronic Materials: Science & Technology, vol 102. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1380-6_2

Download citation

Publish with us

Policies and ethics