Skip to main content

Semiconductors for Photocatalytic and Photoelectrochemical Solar Water Splitting

  • Chapter
From Molecules to Materials

Abstract

The fossil energy resources upon which we are heavily dependent will inevitably be depleted in the not-so-distant future. Solar energy may be the best and perhaps only choice for meeting long-term human energy needs. Photocatalytic and photoelectrochemical (PEC) water splitting are ideal approaches to the conversion of solar energy into clean chemical energy H2, an excellent energy carrier. In this chapter, basic concepts including thermodynamics and experimental methods of photocatalysis and photoelectrochemistry were introduced. As an important aspect of this research, the design of visible-light-driven semiconducting materials was discussed. Then, we summarized recent advancements in photocatalytic and photoelectrochemical water splitting, as well as the current understanding of the mechanisms of these reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–10.

    Google Scholar 

  2. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–44.

    Google Scholar 

  3. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–8.

    Google Scholar 

  4. Hisatomi T, Minegishi T, Domen K (2012) Kinetic assessment and numerical modeling of photocatalytic water splitting toward efficient solar hydrogen production. Bull Chem Soc Jpn 85:647–55.

    Google Scholar 

  5. Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111:7851–61.

    Google Scholar 

  6. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–35

    Google Scholar 

  7. Maeda K (2013) Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal 3:1486 − 503.

    Google Scholar 

  8. Murphy A B, Barnes P R F, Randeniya L K, Plumb I C, Grey I E, Horne M D, Glasscock J A (2006) Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrogen Energy 31:1999–2017.

    Google Scholar 

  9. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–78.

    Google Scholar 

  10. Nozik A J (1978) Photoelectrochemistry: applications to solar energy conversion. Ann Rev Phys Chem 29:189–222.

    Google Scholar 

  11. Prévot M S, Kevin Sivula K (2013) Photoelectrochemical tandem cells for solar water splitting. J Phys Chem C 117:17879 − 93.

    Google Scholar 

  12. Hu S, Xiang C, Haussener S, Bergercd A D, Lewis N S (2013) An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ Sci 6:2984–93.

    Google Scholar 

  13. Pinaud B A, Benck J D, Seitz L C, Forman A J, Chen Z, Deutsch T G, James B D, Baum K N, Baum G N, Ardo S, Wang H, Miller E, Jaramillo T F (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci 6:1983–2002.

    Google Scholar 

  14. Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1:2655–61.

    Google Scholar 

  15. Sayama K, Arakawa H (1997) Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt–TiO2 catalyst. J Chem Soc Faraday Trans 93:1647–54.

    Google Scholar 

  16. Takata T, Furumi Y, Shinohara K, Tanaka A, Hara M, Kondo J N, Domen K (1997) Photocatalytic decomposition of water on spontaneously hydrated layered perovskites. Chem Mater 9:1063–4.

    Google Scholar 

  17. Domen K, Kudo A, Shinozaki A, Tanaka A, Maruya K, Onishi T (1986) Photodecomposition of water and hydrogen evolution from aqueous methanol solution over novel niobate photocatalysts. J Chem Soc Chem Commun 4:356–7.

    Google Scholar 

  18. Miseki Y, Kato H, Kudo A (2006) Water splitting into H2 and O2 over Ba5Nb4O15 photocatalysts with layered perovskite structure prepared by polymerizable complex method. Chem Lett 35:1052–53.

    Google Scholar 

  19. Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125:3082–9.

    Google Scholar 

  20. Scaife D E (1980) Oxide semiconductor in photoelectrochemical conversion of solar energy. Sol Energy 25:41–54.

    Google Scholar 

  21. Takata T, Domen K (2009) Defect engineering of photocatalysts by doping of aliovalent metal cations for efficient water splitting. J Phys Chem C 113:19386–8.

    Google Scholar 

  22. Pan X, Yang M, Fu X, Zhang N, Xu Y (2013) Defective TiO2 with oxygen vacancies: synthesis properties and photocatalytic applications. Nanoscale 5:3601–14.

    Google Scholar 

  23. Hoang S, Berglund S P, Hahn N T, Bard A J, Mullins C B (2012) Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. J Am Chem Soc 134:3659–62.

    Google Scholar 

  24. Wang L, Wang W, Shang M, Yin W, Sun S, Zhang L (2010) Enhanced photocatalytic hydrogen evolution under visible light over Cd1–xZnxS solid solution with cubic zinc blend phase. Int J Hydrogen Energy 35:19–25.

    Google Scholar 

  25. Liu M, Wang L, Lu G, Yao X, Guo L (2011) Twins in Cd1–xZnxS solid solution: Highly efficient photocatalyst for hydrogen generation from water. Energy Environ Sci 4:1372–8.

    Google Scholar 

  26. Tsuji I, Kato H, Kobayashi H, Kudo A (2004) Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J Am Chem Soc 126:13406–13.

    Google Scholar 

  27. Tsuji I, Kato H, Kudo A (2005) Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS–CuInS2–AgInS2 solid-solution photocatalyst. Angew Chem Int Ed 44:3565–8.

    Google Scholar 

  28. Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc 127:8286–7.

    Google Scholar 

  29. Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, Domen K, Yashima M (2007) Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. J Phys Chem C 111:1042–8.

    Google Scholar 

  30. Chun W, Ishikawa A, Fujisawa H, Takata T, Kondo J N, Hara M, Kawai M, Matsumoto Y, Domen K (2003) Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J Phys Chem B 107:1798–803.

    Google Scholar 

  31. Zhang F, Yamakata A, Maeda K, Moriya Y, Takata T, Kubota J, Teshima K, Oishi S, Domen K (2012) Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. J Am Chem Soc 134:8348–51.

    Google Scholar 

  32. Maeda K, Lu D, Domen K (2013) Oxidation of water under visible-light irradiation over modified BaTaO2N photocatalysts promoted by tungsten species. Angew Chem Int Ed 52:1–5.

    Google Scholar 

  33. Hisatomi T, Katayama C, Moriya Y, Minegishi M, Katayama M, Nishiyama H, Yamadad T, Domen K (2013) Photocatalytic oxygen evolution using BaNbO2N modified with cobalt oxide under photoexcitation up to 740 nm. Energy Environ Sci 6:3595–9.

    Google Scholar 

  34. Ishikawa A, Yamada Y, Takata T, Kondo J N, Hara M, Kobayashi H, Domen K (2003) Novel synthesis and photocatalytic activity of oxysulfide Sm2Ti2S2O5. Chem Mater 15:4442–6.

    Google Scholar 

  35. Zhao W, Maeda K, Zhang F, Hisatomia T, Domen K (2014) Effect of post-treatments on the photocatalytic activity of Sm2Ti2S2O5 for the hydrogen evolution reaction. Phys Chem Chem Phys 16:12051–6.

    Google Scholar 

  36. Ishikawa A, Takata T, Kondo J N, Hara M, Kobayashi H, Domen K (2002) Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J Am Chem Soc 124:13547–53.

    Google Scholar 

  37. Suzuki T, Hisatomi T, Teramura K, Shimodaira Y, Kobayashi H, Domen K (2012) A titanium-based oxysulfide photocatalyst: La5Ti2MS5O7 (M = Ag, Cu) for water reduction and oxidation. Phys Chem Chem Phys 14:15475–81.

    Google Scholar 

  38. Xing Z, Zong X, Pan J, Wang L (2013) On the engineering part of solar hydrogen production from water splitting: Photoreactor design. Chem Eng Sci 104:125–46.

    Google Scholar 

  39. Huang Z, Xiang C, Lewerenz H, Lewis N S, (2014) Two stories from the ISACS 12 conference: solar-fuel devices and catalyst identification. Energy Environ Sci 7:1207–11.

    Google Scholar 

  40. Maeda K, Teramura K, Masuda H, Takata T, Saito N, Inoue Y, Domen K (2006) Efficient overall water splitting under visible-light irradiation on (Ga1-xZnx)(N1-xOx) dispersed with Rh − Cr mixed-oxide nanoparticles: effect of reaction conditions on photocatalytic activity. J Phys Chem 110:13107–12.

    Google Scholar 

  41. Maeda K, Teramura K, Lu D, Saito N, Inoue Y, Domen K (2006) Noble-metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting. Angew Chem Int Ed 45:7806–9.

    Google Scholar 

  42. Chen Z, Jaramillo T F, Deutsch T G, Kleiman-Shwarsctein A, Forman A J, Gaillard N, Garland R, Takanabe K, Heske C, Sunkara M, McFarland E W, Domen K, Miller E L, Turner J A, Dinh H N (2010) Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J Mater Res 25:3–16.

    Google Scholar 

  43. Modestino M A, Walczak K A, Berger A, Evans C M, Haussener S, Koval C, Newman J S, Ager J W, Segalman R A (2014) Robust production of purified H2 in a stable, self-regulating, and continuously operating solar fuel generator. Energy Environ Sci 7:297–301.

    Google Scholar 

  44. Maeda K, Hashiguchi H, Masuda H, Abe R, Domen K (2008) Photocatalytic Activity of (Ga1-xZnx)(N1-xOx) for Visible-Light-Driven H2 and O2 Evolution in the Presence of Sacrificial Reagents. J Phys Chem C 112:3447–52.

    Google Scholar 

  45. Sato S, White J M (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72:83–6.

    Google Scholar 

  46. Domen K, Naito S, Soma M, Onishi T, Tamaru K (1980) Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst. J Chem Soc Chem Commun 543–4.

    Google Scholar 

  47. Lehn J M, Sauvage J P, Ziessel R (1980) Photochemical water splitting.- Continuous generation of hydrogen and oxygen on irradiation of aqueous suspensions of metal loaded strontium titanate. Nouv J Chim 4:623.

    Google Scholar 

  48. Domen K, Kudo A, Onishi T (1986) Mechanism of photocatalytic decomposition of water into H2 and O2 over NiO/SrTiO3. J Catal 102:92–8.

    Google Scholar 

  49. Domen K, Naito S, Onishi T, Tamaru K (1982) Study of the photocatalytic decomposition of water vapor over a NiO–SrTiO catalyst. J Phys Chem 86:3657–61.

    Google Scholar 

  50. Domen K, Kudo A, Onishi T, Kosugi N, Kuroda H (1986) Photocatalytic decomposition of water into hydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder. 1. structure of the catalysts. J Phys Chem 90:292–5.

    Google Scholar 

  51. Kudo A, Sayama K, Tanaka A, Asakura K, Domen K, Maruya K, Onishi T (1989) Nickel-loaded K4Nb6O17 photocatalyst in the decomposition of H2O into H2 and O2: structure and reaction mechanism. J Catal 120:337–52.

    Google Scholar 

  52. Osterloh F E (2008) Inorganic materials as catalysts for photochemical splitting of water, Chem Mater 20:35–54.

    Google Scholar 

  53. Inoue Y (2009) Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10- related electronic configurations. Energy Environ Sci 2:364–86.

    Google Scholar 

  54. Sakata Y, Matsuda Y, Nakagawa T, Yasunaga R, Imamura H, Teramura K (2011) Remarkable improvement of the photocatalytic activity of Ga2O3 towards the overall splitting of H2O. ChemSusChem 4:181–4.

    Google Scholar 

  55. Yamakata A, Ishibashi T, Kato H, Kudo A, Onishi H (2003) Photodynamics of NaTaO3 catalysts for efficient water splitting. J Phys Chem B 107:14383–7.

    Google Scholar 

  56. Maeda K, Teramura K, Saito N, Inoue Y, Domen K (2006) Improvement of photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting by co-loading Cr and another transition metal. J Catal 243:303–8.

    Google Scholar 

  57. Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Characterization of Rh − Cr mixed-oxide nanoparticles dispersed on (Ga1-xZnx)(N1-xOx) as a cocatalyst for visible-light-driven overall water splitting. J Phys Chem B 110:13753–8.

    Google Scholar 

  58. Yoshida M, Takanabe K, Maeda K, Ishikawa A, Kubota J, Sakata Y, Ikezawa Y, Domen K (2009) Role and function of noble-metal/Cr-layer core/shell structure cocatalysts for photocatalytic overall water splitting studied by model electrodes. J Phys Chem C 113:10151–7.

    Google Scholar 

  59. Maeda K, Xiong A, Yoshinaga T, Ikeda T, Sakamoto N, Hisatomi T, Takashima M, Lu D, Kanehara M, Setoyama T, Teranishi T, Domen K (2010) Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light. Angew Chem Int Ed 49:4096–9.

    Google Scholar 

  60. Xiong A, Yoshinaga T, Ikeda T, Takashima M, Hisatomi T, Maeda K, Setoyama T, Teranishi T, Domen K (2014) Effect of hydrogen and oxygen evolution cocatalysts on photocatalytic activity of GaN:ZnO. Eur J Inorg Chem 4:767–72.

    Google Scholar 

  61. Ohno T, Bai L, Hisatomi T, Maeda K, Domen K (2012) Photocatalytic water splitting using modified GaN:ZnO solid solution under visible light: long-time operation and regeneration of activity. J Am Chem Soc 134:8254–9.

    Google Scholar 

  62. Maeda K, Lu D, Domen K (2013) Direct water splitting into hydrogen and oxygen under visible light by using modified TaON photocatalysts with d0 electronic configuration. Chem Eur J 19:4986–91.

    Google Scholar 

  63. Maeda K, Terashima H, Kase K, Higashi M, Tabata M, Domen K (2008) Surface modification of TaON with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light, Bull Chem Soc Jpn 81:927–37.

    Google Scholar 

  64. Maeda K, Higashi M, Lu D, Abe R, Domen K (2010) Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132:5858–68.

    Google Scholar 

  65. Sasaki Y, Nemoto H, Saito K, Kudo A (2009) Solar water splitting using powdered photocatalysts driven by z-schematic inter-particle electron transfer without an electron mediator. J Phys Chem C 113:17536–42.

    Google Scholar 

  66. Sasaki Y, Kato H, Kudo A (2013) [Co(bpy)3]3+/2+ and [Co(phen)3]3+/2+ electron mediators for overall water splitting under sunlight irradiation using z-scheme photocatalyst system. J Am Chem Soc 135:5441–9.

    Google Scholar 

  67. Higashi M, Abe R, Takata T, Domen K (2009) Photocatalytic overall water splitting under visible light using ATaO2N (A = Ca, Sr, Ba) and WO3 in a IO3−/I shuttle redox mediated system. Chem Mater 21:1543–9.

    Google Scholar 

  68. Bard A J (1979) Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photochem 10:59–75.

    Google Scholar 

  69. Fujihara K, Ohno T, Matsumura M (1998) Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles. J Chem Soc Faraday Trans 94:3705–9.

    Google Scholar 

  70. Sayama K, Yoshida R, Kusama H, Okabe K, Abe Y, Arakawa H (1997) Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system. Chem Phys Lett 277:387–91.

    Google Scholar 

  71. Abe R, Sayama K, Domen K, Arakawa H (2001) A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3−/I shuttle redox mediator. Chem Phys Lett 344:339–44.

    Google Scholar 

  72. Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2001) Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3 /I shuttle redox mediator under visible light irradiation. Chem Commun 2416–7.

    Google Scholar 

  73. Sasaki Y, Iwase A, Kato A, Kudo A (2008) The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation. J Catal 259:133–7.

    Google Scholar 

  74. Ma S S K, Maeda K, Hisatomi T, Tabata M, Kudo A, Domen K (2013) A redox-mediator-free solar-driven z-scheme water-splitting system consisting of modified Ta3N5 as an oxygen-evolution photocatalyst. Chem Eur J 19:7480–6.

    Google Scholar 

  75. Khaselev O, Turner J A (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280:425–7.

    Google Scholar 

  76. Reece S Y, Hamel J A, Sung K, Jarvi T D, Esswein A J, Pijpers J J H, Nocera D G (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334:645–8.

    Google Scholar 

  77. Liu C, Tang J, Chen H M, Liu B, Yang P (2013) A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett 13:2989–92.

    Google Scholar 

  78. Kaneshiro J, Gaillard N, Rocheleau R, Miller E (2010) Advances in copper-chalcopyrite thin films for solar energy conversion. Sol Energy Mater Sol Cells 94:12–6.

    Google Scholar 

  79. Moriya M, Minegishi T, Kumagai H, Katayama M, Kubota J, Domen K (2013) Stable hydrogen evolution from CdS-modified CuGaSe2 photoelectrode under visible-light irradiation. J Am Chem Soc 135:3733–5.

    Google Scholar 

  80. Ma G, Minegishi T, Yokoyama D, Kubota J, Domen K (2011) Photoelectrochemical hydrogen production on Cu2ZnSnS4/Mo-mesh thin-film electrodes prepared by electroplating. Chem Phys Lett 501:619–22.

    Google Scholar 

  81. Tilley S D, Cornuz M, Sivula K, Grätzel M (2010) Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew Chem Int Ed 49:6405–8.

    Google Scholar 

  82. Lee S M, Ikeda S, Otsuka Y, Septina W, Harada T, Matsumura M (2012) Homogeneous electrochemical deposition of In on a Cu–covered Mo substrate for fabrication of efficient solar cells with a CuInS2 photoabsorber. Electrochim Acta 79:189–96.

    Google Scholar 

  83. Bandyopadhyaya S, Chaudhuri S, Pal A K (2000) Synthesis of CuInS2 films by sulphurization of Cu/In stacked elemental layers. Sol Energy Mater Sol Cells 60:323–39.

    Google Scholar 

  84. Higashi M, Domen K, Abe R (2011) Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy Environ Sci 4:4138–47.

    Google Scholar 

  85. Li Y, Takata T, Cha D, Takanabe K, Minegishi T, Kubota J, Domen K (2013) Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv Mater 25:125–31.

    Google Scholar 

  86. Li Y, Zhang L, Torres-Pardo A, González-Calbet J M, Ma Y, Oleynikov P, Terasaki O, Asahina S, Shima M, Cha D, Zhao Lan, Takanabe K, Kubota J, Domen K (2013) Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nature Commun 4:2566.

    Google Scholar 

  87. Nishimura N, Maeda K, Takata T, Lu D, Kubota J, Domen K (2013) Fabrication of photoelectrodes from LaTiO2N particles for photoelectrochemical water splitting. Bull Chem Soc Jpn 86:540–6.

    Google Scholar 

  88. Minegishi T, Nishimura N, Kubota J, Domen K (2013) Photoelectrochemical properties of LaTiO2N electrodes prepared by particle transfer for sunlight-driven water splitting. Chem Sci 4:1120–4.

    Google Scholar 

  89. Kudo A, Omori K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121:11459–67.

    Google Scholar 

  90. Jia Q, Iwashina K, Kudo A (2012) Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation. Proc Natl Acad Sci U S A 109:11564–9.

    Google Scholar 

  91. Li R, Zhang F, Wang D, Yang J, Li M, Zhu J, Zhou X, Han H, Li C (2013) Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nature Commun 4:1432.

    Google Scholar 

  92. Li Z, Luo W, Zhang M, Feng J, Zou Z (2013) Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ Sci 6:347–70.

    Google Scholar 

  93. Yin W, Wei S, Al-Jassim M M, Turner J, Yan Y (2011) Doping properties of monoclinic BiVO4 studied by first-principles density-functional theory. Phys Rev B 83:155102.

    Google Scholar 

  94. Zhao Z, Luo W, Li Z, Zou Z (2010) Density functional theory study of doping effects in monoclinic clinobisvanite BiVO4. Phys Lett A 374:4919–27.

    Google Scholar 

  95. Sayama K, Nomura A, Zou Z, Abe R, Abe Y, Arakawa H (2003) Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chem Commun 2908–9.

    Google Scholar 

  96. Luo W, Yang Z, Li Z, Zhang J, Liu J, Zhao Z, Wang Z, Yan S, Yu T, Zou Z (2011) Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ Sci 4:4046–51.

    Google Scholar 

  97. Long M, Cai W, Kisch H (2008) Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-Co3O4. J Phys Chem C 112:548–54.

    Google Scholar 

  98. Wang D, Li R, Zhu J, Shi J, Han J, Zong X, Li C (2012) Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: essential relations between electrocatalyst and photocatalyst. J Phys Chem C 116:5082–9.

    Google Scholar 

  99. Zhong D K, Choi S, Gamelin D R (2011) Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. J Am Chem Soc 133:18370–7.

    Google Scholar 

  100. Seabold J A, Choi K (2012) Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J Am Chem Soc 134:2186–92.

    Google Scholar 

  101. Sivula K, Formal F L, Grätzel M (2011) Solar water splitting: progress using hematite (a-Fe2O3) photoelectrodes. ChemSusChem 4:432–49.

    Google Scholar 

  102. Sivula K (2013) Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J Phys Chem Lett 4:1624 − 33.

    Google Scholar 

  103. Cherepy N J, Liston D B, Lovejoy J A, Deng H, Zhang J Z (1998) Ultrafast studies of photoexcited electron dynamics in γ- and α-Fe2O3 semiconductor nanoparticles. J Phys Chem B 102:770–6.

    Google Scholar 

  104. Gardner R F G, Sweett F, Tanner D W (1963) The electrical properties of alpha ferric oxide—II: Ferric oxide of high purity. J Phys Chem Solids 24:1183–6.

    Google Scholar 

  105. Barroso M, Pendlebury S R, Cowan A J, Durrant J R (2013) Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem Sci 4:2724–34.

    Google Scholar 

  106. Hisatomi T, Dotan H, Stefik M, Sivula K, Rothschild A, Grätzel M, Mathews N (2012) Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer. Adv Mater 24:2699–702.

    Google Scholar 

  107. Brillet J, Cornuz M, Formal F L, Yum J, Grätzel M, Sivula K (2010) Examining architectures of photoanode–photovoltaic tandem cells for solar water splitting. J Mater Res 25:17–24.

    Google Scholar 

  108. Zhong D K, Cornuz M, Sivula K, Grätzel M, Gamelin D R (2011) Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ Sci 4:1759–64.

    Google Scholar 

  109. Bak T, Nowotny J, Rekas M, Sorrell C C (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrogen Energy 27:991–1022.

    Google Scholar 

  110. Huda M N, Yan Y, Moon C, Wei S, Al-Jassim M M (2008) Density-functional theory study of the effects of atomic impurity on the band edges of monoclinic WO3. Phys Rev B: Condens Matter Mater Phys 77:195102.

    Google Scholar 

  111. Liu G, Wang X, Wang X, Han H, Li C (2012) Photocatalytic H2 and O2 evolution over tungsten oxide dispersed on silica. J Catal 293:61–6.

    Google Scholar 

  112. Abe R, Takami H, Murakami N, Ohtani B (2008) Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J Am Chem Soc 130:7780–1.

    Google Scholar 

  113. Yang B, Zhang Y, Drabarek E, Barnes P R F, Luca V (2007) Enhanced photoelectrochemical activity of sol-gel tungsten trioxide films through textural control. Chem Mater 19:5664–72.

    Google Scholar 

  114. Bignozzi C A, Caramori S, Cristino V, Argazzi R, Medac L, Taccac A (2013) Nanostructured photoelectrodes based on WO3: applications to photooxidation of aqueous electrolytes. Chem Soc Rev 42:2228–46.

    Google Scholar 

  115. Hong S J, Lee S, Jang J S, Lee J S (2011) Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci 4:1781–7.

    Google Scholar 

  116. Kim J K, Shin K, Cho S M, Leeb T, Park J H (2011) Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: application to unassisted solar water splitting. Energy Environ Sci 4:1465–70.

    MATH  Google Scholar 

  117. Jongh P E, Vanmaekelbergh D, Kelly J J (2000) Photoelectrochemistry of Electrodeposited Cu2O. J Electrochem Soc 147:486–9.

    Google Scholar 

  118. Engel C J, Polson T A, Spado J R, Bell J M, Fillinger A (2008) Photoelectrochemistry of Porous p-Cu2O Films. J Electrochem Soc, 155:37–42.

    Google Scholar 

  119. Amano F, Ebina T, Ohtani B (2014) Enhancement of photocathodic stability of p-type copper(I) oxide electrodes by surface etching treatment. Thin Solid Films 550:340–6.

    Google Scholar 

  120. Hsu Y, Yu C, Lin H, Chen Y, Lin Y (2013) Template synthesis of copper oxide nanowires for photoelectrochemical hydrogen generation. J Electroanal Chem 704:19–23.

    Google Scholar 

  121. Siripala W, Ivanovskaya A, Jaramillo T F, Baeck S, McFarland E W (2003) A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Sol Energy Mater Sol Cells 77:229–37.

    Google Scholar 

  122. Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nature Mater 10:456–61.

    Google Scholar 

  123. Paracchino A, Mathews N, Hisatomi T, Stefik M, Tilley S D, Grätzel M (2012) Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability. Energy Environ Sci 5:8673–81.

    Google Scholar 

  124. Maeda K (2011) Photocatalytic water splitting using semiconductor particles: History and recent developments. J Photochem Photobiol C 12:237–68.

    Google Scholar 

  125. Hisatomi T, Maeda K, Takanabe K, Kubota J, Domen K (2009) Aspects of the water splitting mechanism on (Ga1−xZnx)(N1−xOx) Photocatalyst Modified with Rh2−yCryO3 cocatalyst. J Phys Chem C 113:21458–66.

    Google Scholar 

  126. Hisatomi T, Miyazaki K, Takanabe K, Maeda K, Kubota J, Sakata Y, Domen K (2010) Isotopic and kinetic assessment of photocatalytic water splitting on Zn-added Ga2O3 photocatalyst loaded with Rh2−yCryO3 cocatalyst. Chem Phys Lett 486:144–6.

    Google Scholar 

  127. Wrona P K, Lasia A, Lessard M, Ménard H (1992) Kinetics of the hydrogen evolution reaction on a rhodium electrode. Electrochim Acta 37:1283–94.

    Google Scholar 

  128. Dionigi F, Vesborg P C K, Pedersen T, Hansen O, Dahl S, Xiong A, Maeda K, Domen K, Chorkendorff I (2011) Gas phase photocatalytic water splitting with Rh2-yCryO3/GaN:ZnO in μ-reactors, Energy Environ Sci 4:2937–42.

    Google Scholar 

  129. Yoshida M, Yamakata A, Takanabe K, Kubota J, Osawa M, Domen K (2009) ATR-SEIRAS investigation of the Fermi level of Pt cocatalyst on a GaN photocatalyst for hydrogen evolution under irradiation. J Am Chem Soc 131:13218–9.

    Google Scholar 

  130. Correia A N, Machado S A S (1998) Hydrogen evolution on electrodeposited Ni and Hg ultramicroelectrodes. Electrochim Acta 43:367–73.

    Google Scholar 

  131. Dotan H, Sivula K, Grätzel M, Rothschild A, Warren S C (2011) Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ Sci 4:958–64.

    Google Scholar 

  132. Formal F L, Grätzel M, Sivula K (2010) Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv Funct Mater 20:1099–107.

    Google Scholar 

  133. Xia J, Masaki N, Jiang K, Yanagida S (2007) Sputtered Nb2O5 as a novel blocking layer at conducting glass/TiO2 interfaces in dye-sensitized ionic liquid solar cells. J Phys Chem C 111:8092–7.

    Google Scholar 

  134. Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann T W (2012) Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes, Energy Environ Sci 5:7626–36.

    Google Scholar 

  135. Maeda K, Teramura K, Domen K (2008) Effect of post-calcination on photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting under visible light. J Catal 254:198–204.

    Google Scholar 

  136. Abdi F F, Han L, Smets A H M, Zeman M, Dam B, Krol R V (2013) Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat Commun 4:2195.

    Google Scholar 

Download references

Acknowledgement

This work was supported by Grant-in-Aids for Specially Promoted Research (no. 23000009) and for Young Scientists (B) (no. 25810112) of the Japan Society for the Promotion of Science (JSPS) and the Artificial Photosynthesis Project of the Ministry of Economy, Trade and Industry (METI) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunari Domen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ma, G., Hisatomi, T., Domen, K. (2015). Semiconductors for Photocatalytic and Photoelectrochemical Solar Water Splitting. In: Rozhkova, E., Ariga, K. (eds) From Molecules to Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13800-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13800-8_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13799-5

  • Online ISBN: 978-3-319-13800-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics