Skip to main content
Log in

Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

As an eco-friendly, efficient, and low-cost technique, photoelectrochemical water splitting has attracted growing interest in the production of clean and sustainable hydrogen by the conversion of abundant solar energy. In the photoelectrochemical system, the photoelectrode plays a vital role in absorbing the energy of sunlight to trigger the water splitting process and the overall efficiency depends largely on the integration and design of photoelectrochemical devices. In recent years, the optimization of photoelectrodes and photoelectrochemical devices to achieve highly efficient hydrogen production has been extensively investigated. In this paper, a concise review of recent advances in the modification of nanostructured photoelectrodes and the design of photoelectrochemical devices is presented. Meanwhile, the general principles of structural and morphological factors in altering the photoelectrochemical performance of photoelectrodes are discussed. Furthermore, the performance indicators and first principles to describe the behaviors of charge carriers are analyzed, which will be of profound guiding significance to increasing the overall efficiency of the photoelectrochemical water splitting system. Finally, current challenges and prospects for an in-depth understanding of reaction mechanisms using advanced characterization technologies and potential strategies for developing novel photoelectrodes and advanced photoelectrochemical water splitting devices are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi P, Cheng X, Lyu S. Efficient electrocatalytic oxygen evolution at ultra-high current densities over 3D Fe, N doped Ni(OH)2 nanosheets. Chinese Chemical Letters, 2021, 32(3): 1210–1214

    Article  CAS  Google Scholar 

  2. Wang K, Wang X, Li Z, Yang B, Ling M, Gao X, Lu J, Shi Q, Lei L, Wu G, Hou Y. Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: beyond oxides. Nano Energy, 2020, 77: 105162

    Article  CAS  Google Scholar 

  3. Kannan N, Vakeesan D. Solar energy for future world: a review. Renewable & Sustainable Energy Reviews, 2016, 62: 1092–1105

    Article  Google Scholar 

  4. Jiang C, Moniz S J A, Wang A, Zhang T, Tang J. Photoelect-rochemical devices for solar water splitting—materials and challenges. Chemical Society Reviews, 2017, 46(15): 4645–4660

    Article  CAS  PubMed  Google Scholar 

  5. Zhao Y, Ding C, Zhu J, Qin W, Tao X, Fan F, Li R, Li C. A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts. Angewandte Chemie International Edition, 2020, 59(24): 9653–9658

    Article  CAS  PubMed  Google Scholar 

  6. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38(1): 253–278

    Article  CAS  PubMed  Google Scholar 

  7. Chang X, Wang T, Gong J. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy & Environmental Science, 2016, 9(7): 2177–2196

    Article  CAS  Google Scholar 

  8. Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051

    Article  CAS  PubMed  Google Scholar 

  9. Grätzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344

    Article  PubMed  Google Scholar 

  10. Choudhury C, Andersen S L, Rekstad J. A solar air heater for low temperature applications. Solar Energy, 1988, 40(4): 335–343

    Article  CAS  Google Scholar 

  11. Cheng F, Wang L, Wang H, Lei C, Yang B, Li Z, Zhang Q, Lei L, Wang S, Hou Y. Boosting alkaline hydrogen evolution and Zn-H2O cell induced by interfacial electron transfer. Nano Energy, 2020, 71: 104621

    Article  CAS  Google Scholar 

  12. Lei C, Chen H, Cao J, Yang J, Qiu M, Xia Y, Yuan C, Yang B, Li Z, Zhang X, et al. Fe-N4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Advanced Energy Materials, 2018, 8(26): 1801912

    Article  CAS  Google Scholar 

  13. Lei C, Wang Y, Hou Y, Liu P, Yang J, Zhang T, Zhuang X, Chen M, Yang B, Lei L, et al. Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy & Environmental Science, 2019, 12(1): 149–156

    Article  CAS  Google Scholar 

  14. Wang L, Li Z, Wang K, Dai Q, Lei C, Yang B, Zhang Q, Lei L, Leung M K H, Hou Y. Tuning d-band center of tungsten carbide via Mo doping for efficient hydrogen evolution and Zn-H2O cell over a wide pH range. Nano Energy, 2020, 74: 104850

    Article  CAS  Google Scholar 

  15. Hou Y, Qiu M, Kim M G, Liu P, Nam G, Zhang T, Zhuang X, Yang B, Cho J, Chen M, et al. Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nature Communications, 2019, 10(1): 1392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hou Y, Qiu M, Nam G, Kim M G, Zhang T, Liu K, Zhuang X, Cho J, Yuan C, Feng X. Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three-dimensional electrode for electrochemical and photoelectrochemical water splitting. Nano Letters, 2017, 17(7): 4202–4209

    Article  CAS  PubMed  Google Scholar 

  17. Hou Y, Qiu M, Zhang T, Ma J, Liu S, Zhuang X, Yuan C, Feng X. Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil. Advanced Materials, 2017, 29(3): 1604480

    Article  CAS  Google Scholar 

  18. White J L, Baruch M F, Pander J E III, Hu Y, Fortmeyer I C, Park J E, Zhang T, Liao K, Gu J, Yan Y, et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chemical Reviews, 2015, 115(23): 12888–12935

    Article  CAS  PubMed  Google Scholar 

  19. Niu F, Wang D, Li F, Liu Y, Shen S, Meyer T J. Hybrid photoelectrochemical water splitting systems: from interface design to system assembly. Advanced Energy Materials, 2019, 10(11): 1900399

    Article  CAS  Google Scholar 

  20. Siavash Moakhar R, Hosseini-Hosseinabad S M, Masudy-Panah S, Seza A, Jalali M, Fallah-Arani H, Dabir F, Gholipour S, Abdi Y, Bagheri-Hariri M, et al. Photoelectrochemical water-splitting using CuO-based electrodes for hydrogen production: a review. Advanced Materials, 2021, 33(33): 2007285

    Article  CAS  Google Scholar 

  21. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38

    Article  CAS  PubMed  Google Scholar 

  22. Hellman A, Wang B. First-principles view on photoelectrochemistry: water-splitting as case study. Inorganics, 2017, 5(2): 37

    Article  CAS  Google Scholar 

  23. Zhang H, Wang H Z, Xuan J. Rational design of photoelectrochemical cells towards bias-free water splitting: thermodynamic and kinetic insights. Journal of Power Sources, 2020, 462: 228113

    Article  CAS  Google Scholar 

  24. Zhang X Q, Bieberle-Hutter A. Modeling and simulations in photoelectrochemical water oxidation: from single level to multiscale modeling. ChemSusChem, 2016, 9(11): 1223–1242

    Article  CAS  PubMed  Google Scholar 

  25. Boumeriame H, Da Silva E S, Cherevan A S, Chafik T, Faria J L, Eder D. Layered double hydroxide (LDH)-based materials: a mini-review on strategies to improve the performance for photocatalytic water splitting. Journal of Energy Chemistry, 2022, 64: 406–431

    Article  Google Scholar 

  26. Reddy C V, Reddy I N, Harish V V N, Reddy K R, Shetti N P, Shim J, Aminabhavi T M. Efficient removal of toxic organic dyes and photoelectrochemical properties of iron-doped zirconia nanoparticles. Chemosphere, 2020, 239: 124766

    Article  CAS  PubMed  Google Scholar 

  27. Ye K H, Li H B, Huang D, Xiao S, Qiu W T, Li M Y, Hu Y W, Mai W J, Ji H B, Yang S H. Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nature Communications, 2019, 10(1): 3687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chandrasekaran S, Yao L, Deng L B, Bowen C, Zhang Y, Chen S M, Lin Z Q, Peng F, Zhang P X. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 2019, 48(15): 4178–4280

    Article  CAS  PubMed  Google Scholar 

  29. Chen Y B, Zheng W Y, Murcia-Lopez S, Lv F, Morante J R, Vayssieres L, Burda C. Light management in photoelectrochemical water splitting—from materials to device engineering. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2021, 9(11): 3726–3748

    Article  CAS  Google Scholar 

  30. Kim J H, Hansora D, Sharma P, Jang J W, Lee J S. Toward practical solar hydrogen production—an artificial photosynthetic leaf-to-farm challenge. Chemical Society Reviews, 2019, 48(7): 1908–1971

    Article  CAS  PubMed  Google Scholar 

  31. Li L Z, Liu C H, Qiu Y Y, Mitsuzak N, Chen Z D. Convexnanorods of alpha-Fe2O3/CQDs heterojunction photoanode synthesized by a facile hydrothermal method for highly efficient water oxidation. International Journal of Hydrogen Energy, 2017, 42(31): 19654–19663

    Article  CAS  Google Scholar 

  32. Wang C Z, Chen Z, Jin H B, Cao C B, Li J B, Mi Z T. Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. Journal of Materials Chemistry A, 2014, 2(42): 17820–17827

    Article  CAS  Google Scholar 

  33. Varadhan P, Fu H C, Priante D, Retamal J R D, Zhao C, Ebaid M, Ng T K, Ajia I, Mitra S, Roqan I S, et al. Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting. Nano Letters, 2017, 17(3): 1520–1528

    Article  CAS  PubMed  Google Scholar 

  34. Nie Q, Yang L, Cao C, Zeng Y M, Wang G Z, Wang C Z, Lin S W. Interface optimization of ZnO nanorod/CdS quantum dots heterostructure by a facile two-step low-temperature thermal treatment for improved photoelectrochemical water splitting. Chemical Engineering Journal, 2017, 325: 151–159

    Article  CAS  Google Scholar 

  35. Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 2014, 43(22): 7520–7535

    Article  CAS  PubMed  Google Scholar 

  36. Hamdani I R, Bhaskarwar A N. Recent progress in material selection and device designs for photoelectrochemical water-splitting. Renewable & Sustainable Energy Reviews, 2021, 138: 110503

    Article  CAS  Google Scholar 

  37. Li J K, Cheng K W. Surface modification of the p-type Cu2ZnSnS4 photocathode with n-type zinc oxide nanorods for photo-driven salt water splitting. International Journal of Hydrogen Energy, 2021, 46(53): 26961–26975

    Article  CAS  Google Scholar 

  38. Li Z S, Luo W J, Zhang M L, Feng J Y, Zou Z G. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy & Environmental Science, 2013, 6(2): 347–370

    Article  CAS  Google Scholar 

  39. Wu N Q. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: a review. Nanoscale, 2018, 10(6): 2679–2696

    Article  CAS  PubMed  Google Scholar 

  40. Kim J H, Lee J S. Elaborately modified BiVO4 photoanodes for solar water splitting. Advanced Materials, 2019, 31(20): 1806938

    Article  CAS  Google Scholar 

  41. Saraswat S K, Rodene D D, Gupta R B. Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light. Renewable & Sustainable Energy Reviews, 2018, 89: 228–248

    Article  CAS  Google Scholar 

  42. Chen F, Ma T Y, Zhang T R, Zhang Y H, Huang H W. Atomic-level charge separation strategies in semiconductor-based photocatalysts. Advanced Materials, 2021, 33(10): 2005256

    Article  CAS  Google Scholar 

  43. Qian W Q, Xu S W, Zhang X M, Li C B, Yang W Y, Bowen C R, Yang Y. Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Letters, 2021, 13(1): 156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang S, Ye H, Hua J, Tian H. Recent advances in dye-sensitized photoelectrochemical cells for water splitting. EnergyChem, 2019, 1(3): 100015

    Article  Google Scholar 

  45. Joy J, Mathew J, George S C. Nanomaterials for photoelectrochemical water splitting—review. International Journal of Hydrogen Energy, 2018, 43(10): 4804–4817

    Article  CAS  Google Scholar 

  46. Xu P T, McCool N S, Mallouk T E. Water splitting dye-sensitized solar cells. Nano Today, 2017, 14: 42–58

    Article  CAS  Google Scholar 

  47. Huang Y T, Kavanagh S R, Scanlon D O, Walsh A, Hoye R L Z. Perovskite-inspired materials for photovoltaics and beyond-from design to devices. Nanotechnology, 2021, 32(13): 132004

    Article  CAS  PubMed  Google Scholar 

  48. Wang Q, Domen K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chemical Reviews, 2020, 120(2): 919–985

    Article  CAS  PubMed  Google Scholar 

  49. Laskowski F A L, Nellist M R, Qu J J, Boettcher S W. Metal oxide/(oxy)hydroxide overlayers as hole collectors and oxygen-evolution catalysts on water-splitting photoanodes. Journal of the American Chemical Society, 2019, 141(4): 1394–1405

    Article  CAS  PubMed  Google Scholar 

  50. Mazzeo A, Santalla S, Gaviglio C, Doctorovich F, Pellegrino J. Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts. Inorganica Chimica Acta, 2021, 517: 119950

    Article  CAS  Google Scholar 

  51. Xu Y, Schoonen M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 2000, 85(3–4): 543–556

    Article  CAS  Google Scholar 

  52. Bolton J R, Strickler S J, Connolly J S. Limiting and realizable efficiencies of solar photolysis of water. Nature, 1985, 316(6028): 495–500

    Article  CAS  Google Scholar 

  53. Swathi S, Yuvakkumar R, Ravi G, Babu E S, Velauthapillai D, Alharbi S A. Morphological exploration of chemical vapor-deposited P-doped ZnO nanorods for efficient photoelectrochemical water splitting. Ceramics International, 2021, 47(5): 6521–6527

    Article  CAS  Google Scholar 

  54. Eidsvag H, Bentouba S, Vajeeston P, Yohi S, Velauthapillai D. TiO2 as a photocatalyst for water splitting—an experimental and theoretical review. Molecules (Basel, Switzerland), 2021, 26(6): 1687

    Article  CAS  Google Scholar 

  55. Brillet J, Cornuz M, Formal F L, Yum J H, Grätzel M, Sivula K. Examining architectures of photoanode-photovoltaic tandem cells for solar water splitting. Journal of Materials Research, 2010, 25(1): 17–24

    Article  CAS  Google Scholar 

  56. Chen Y B, Feng X Y, Liu Y, Guan X J, Burda C, Guo L J. Metal oxide-based tandem cells for self-biased photoelectrochemical water splitting. ACS Energy Letters, 2020, 5(3): 844–866

    Article  CAS  Google Scholar 

  57. Solarska R, Alexander B D, Augustynski J. Electrochromic and structural characteristics of mesoporous WO3 films prepared by a sol-gel method. Journal of Solid State Electrochemistry, 2004, 8(10): 748–756

    Article  CAS  Google Scholar 

  58. Peter L M, Upul Wijayantha K G. Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives. ChemPhysChem, 2014, 15(10): 1983–1995

    Article  CAS  PubMed  Google Scholar 

  59. Wu H, Tan H L, Toe C Y, Scott J, Wang L Z, Amal R, Ng Y H. Photocatalytic and photoelectrochemical systems: similarities and differences. Advanced Materials, 2020, 32(18): 1904717

    Article  CAS  Google Scholar 

  60. Zheng Z X, Lo I M C. Multifunctional photoelectrochemical systems for coupled water treatment and high-value product generation: current status, mechanisms, remaining challenges, and future opportunities. Current Opinion in Chemical Engineering, 2021, 34: 100711

    Article  Google Scholar 

  61. Zhou S Q, Chen K Y, Huang J W, Wang L, Zhang M Y, Bai B, Liu H, Wang Q Z. Preparation of heterometallic CoNi-MOFs-modified BiVO4: a steady photoanode for improved performance in photoelectrochemical water splitting. Applied Catalysis B, 2020, 266: 118513

    Article  CAS  Google Scholar 

  62. Ahmed M, Dincer I. A review on photoelectrochemical hydrogen production systems: challenges and future directions. International Journal of Hydrogen Energy, 2019, 44(5): 2474–2507

    Article  CAS  Google Scholar 

  63. Bak T, Nowotny J, Rekas M, Sorrell C C. Photo-electrochemical hydrogen generation from water using solar energy, materials-related aspects. International Journal of Hydrogen Energy, 2002, 27(10): 991–1022

    Article  CAS  Google Scholar 

  64. Vanpoucke D E P, Bultinck P, Cottenier S, Van Speybroeck V, Van Driessche I. Aliovalent doping of CeO2: DFT study of oxidation state and vacancy effects. Journal of Materials Chemistry A, 2014, 2(33): 13723–13737

    Article  CAS  Google Scholar 

  65. Liu G, Zhao Y N, Sun C H, Li F, Lu G Q, Cheng H M. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angewandte Chemie International Edition, 2008, 47(24): 4516–4520

    Article  CAS  PubMed  Google Scholar 

  66. Long R, English N J. First-principles calculation of synergistic (N, P)-codoping effects on the visible-light photocatalytic activity of anatase TiO2. Journal of Physical Chemistry C, 2010, 114(27): 11984–11990

    Article  CAS  Google Scholar 

  67. Niu M, Cheng D J, Cao D P. Enhanced photoelectrochemical performance of anatase TiO2 by metal-assisted S-O coupling for water splitting. International Journal of Hydrogen Energy, 2013, 38(3): 1251–1257

    Article  CAS  Google Scholar 

  68. Hu Y F, Huang H T, Feng J Y, Wang W, Guan H M, Li Z S, Zou Z G. Material design and surface/interface engineering of photoelectrodes for solar water splitting. Solar RRL, 2021, 5(4): 2100100

    Article  CAS  Google Scholar 

  69. Jiao Y, Hellman A, Fang Y R, Gao S W, Kall M. Schottky barrier formation and band bending revealed by first-principles calculations. Scientific Reports, 2015, 5(1): 11374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kwon S, Lee S J, Kim S M, Lee Y, Song H, Park J Y. Probing the nanoscale Schottky barrier of metal/semiconductor interfaces of Pt/CdSe/Pt nanodumbbells by conductive-probe atomic force microscopy. Nanoscale, 2015, 7(29): 12297–12301

    Article  CAS  PubMed  Google Scholar 

  71. Tung R T. The physics and chemistry of the Schottky barrier height. Applied Physics Reviews, 2014, 1(1): 011304

    Article  CAS  Google Scholar 

  72. Zawadzki P, Laursen A B, Jacobsen K W, Dahl S, Rossmeisl J. Oxidative trends of TiO2-hole trapping at anatase and rutile surfaces. Energy & Environmental Science, 2012, 5(12): 9866–9869

    Article  CAS  Google Scholar 

  73. Alexandrov V, Neumann A, Scherer M M, Rosso K M. Electron exchange and conduction in nontronite from first-principles. Journal of Physical Chemistry C, 2013, 117(5): 2032–2040

    Article  CAS  Google Scholar 

  74. Jafari T, Moharreri E, Amin A S, Miao R, Song W, Suib S L. Photocatalytic water splitting-the untamed dream: a review of recent advances. Molecules (Basel, Switzerland), 2016, 21(7): 900

    Article  PubMed Central  CAS  Google Scholar 

  75. Zou Z, Ye J, Sayama K, Arakawa H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414(6864): 625–627

    Article  CAS  PubMed  Google Scholar 

  76. Riss A, Elser M J, Bernardi J, Diwald O. Stability and photoelectronic properties of layered titanate nanostructures. Journal of the American Chemical Society, 2009, 131(17): 6198–6206

    Article  CAS  PubMed  Google Scholar 

  77. Wickman B, Bastos Fanta A, Burrows A, Hellman A, Wagner J B, Iandolo B. Iron oxide films prepared by rapid thermal processing for solar energy conversion. Scientific Reports, 2017, 7(1): 40500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. One-dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials, 2003, 15(5): 353–389

    Article  CAS  Google Scholar 

  79. Mahalingam S, Abdullah H. Electron transport study of indium oxide as photoanode in DSSCs: a review. Renewable & Sustainable Energy Reviews, 2016, 63: 245–255

    Article  CAS  Google Scholar 

  80. Xu J, Wang Z, Li W, Zhang X, He D, Xiao X. Ag nanoparticles located on three-dimensional pine tree-like hierarchical TiO2 nanotube array films as high-efficiency plasmonic photocatalysts. Nanoscale Research Letters, 2017, 12(1): 54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Bedin K C, Muche D N F, Melo M A Jr, Freitas A L M, Gonçalves R V, Souza F L. Role of cocatalysts on hematite photoanodes in photoelectrocatalytic water splitting: challenges and future perspectives. ChemCatChem, 2020, 12(12): 3156–3169

    Article  CAS  Google Scholar 

  82. Rajaambal S, Sivaranjani K, Gopinath C S. Recent developments in solar H2 generation from water splitting. Journal of Chemical Sciences, 2015, 127(1): 33–47

    Article  CAS  Google Scholar 

  83. Zafar Z, Yi S S, Li J P, Li C Q, Zhu Y F, Zada A, Yao W J, Liu Z Y, Yue X Z. Recent development in defects engineered photocatalysts: an overview of the experimental and theoretical strategies. Energy & Environmental Materials, 2021. doi: https://doi.org/10.1002/eem1002.12171

  84. Zhang P, Lou X W. Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion. Advanced Materials, 2019, 31(29): 1900281

    Article  CAS  Google Scholar 

  85. Chen S R, Li C L, Hou Z Y. The novel behavior of photoelectrochemical property of annealing TiO2 nanorod arrays. Journal of Materials Science, 2020, 55(14): 5969–5981

    Article  CAS  Google Scholar 

  86. Joo J B, Zhang Q, Dahl M, Lee I, Goebl J, Zaera F, Yin Y D. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energy & Environmental Science, 2012, 5(4): 6321–6327

    Article  CAS  Google Scholar 

  87. Tan H L, Amal R, Ng Y H. Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(32): 16498–16521

    Article  CAS  Google Scholar 

  88. Yan Z Y, Huang W X, Jiang X R, Gao J Z, Hu Y W, Zhang H Z, Shi Q W. Hollow structured black TiO2 with thickness-controllable microporous shells for enhanced visible-light-driven photocatalysis. Microporous and Mesoporous Materials, 2021, 323: 111228

    Article  CAS  Google Scholar 

  89. Zhang W, Tian Y, He H L, Xu L, Li W, Zhao D Y. Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications. National Science Review, 2020, 7(11): 1702–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pihosh Y, Minegishi T, Nandal V, Higashi T, Katayama M, Yamada T, Sasaki Y, Seki K, Suzuki Y, Nakabayashi M, et al. Ta3N5-nanorods enabling highly efficient water oxidation via advantageous light harvesting and charge collection. Energy & Environmental Science, 2020, 13(5): 1519–1530

    Article  CAS  Google Scholar 

  91. Cao M Q, Li H M, Liu K, Hu J H, Pan H, Fu J W, Liu M. Vertical SrNbO2N nanorod arrays for solar-driven photoelectrochemical water splitting. Solar RRL, 2021, 5(6): 2000448

    Article  CAS  Google Scholar 

  92. Chen X B, Liu L, Yu P Y, Mao S S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331(6018): 746–750

    Article  CAS  PubMed  Google Scholar 

  93. Takagi F, Kageshima Y, Teshima K, Domen K, Nishikiori H. Enhanced photoelectrochemical performance from particulate ZnSe:Cu(In,Ga)Se-2 photocathodes during solar hydrogen production via particle size control. Sustainable Energy & Fuels, 2021, 5(2): 412–423

    Article  CAS  Google Scholar 

  94. Mishra A K, Pradhan D. Morphology controlled solution-based synthesis of Cu2O crystals for the facets-dependent catalytic reduction of highly toxic aqueous Cr(VI). Crystal Growth & Design, 2016, 16(7): 3688–3698

    Article  CAS  Google Scholar 

  95. Tan H L, Amal R, Ng Y H. Exploring the different roles of particle size in photoelectrochemical and photocatalytic water oxidation on BiVO4. ACS Applied Materials & Interfaces, 2016, 8(42): 28607–28614

    Article  CAS  Google Scholar 

  96. Xiao M, Wang Z L, Lyu M Q, Luo B, Wang S C, Liu G, Cheng H M, Wang L Z. Hollow nanostructures for photocatalysis: advantages and challenges. Advanced Materials, 2019, 31(38): 1801369

    Article  CAS  Google Scholar 

  97. Kim K, Moon J H. Three-dimensional bicontinuous BiVO4/ZnO photoanodes for high solar water-splitting performance at low bias potential. ACS Applied Materials & Interfaces, 2018, 10(40): 34238–34244

    Article  CAS  Google Scholar 

  98. Osterloh F E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chemical Society Reviews, 2013, 42(6): 2294–2320

    Article  CAS  PubMed  Google Scholar 

  99. Reddy N L, Emin S, Valant M, Shankar M V. Nanostructured Bi2O3@TiO2 photocatalyst for enhanced hydrogen production. International Journal of Hydrogen Energy, 2017, 42(10): 6627–6636

    Article  CAS  Google Scholar 

  100. Yin J, Liao G Z, Zhou J L, Huang C M, Ling Y, Lu P, Li L S. High performance of magnetic BiFeO3 nanoparticle-mediated photocatalytic ozonation for wastewater decontamination. Separation and Purification Technology, 2016, 168: 134–140

    Article  CAS  Google Scholar 

  101. Eftekhari A, Babu V J, Ramakrishna S. Photoelectrode nanomaterials for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2017, 42(16): 11078–11109

    Article  CAS  Google Scholar 

  102. Vishwakarma A K, Tripathi P, Srivastava A, Sinha A S K, Srivastava O N. Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route. International Journal of Hydrogen Energy, 2017, 42(36): 22677–22686

    Article  CAS  Google Scholar 

  103. Wang J J, Sun H F, Huang J, Li Q X, Yang J L. Band structure tuning of TiO2 for enhanced photoelectrochemical water splitting. Journal of Physical Chemistry C, 2014, 118(14): 7451–7457

    Article  CAS  Google Scholar 

  104. Momeni M M, Akbarnia M, Ghayeb Y. Preparation of S-W-codoped TiO2 nanotubes and effect of various hole scavengers on their photoelectrochemical activity: alcohol series. International Journal of Hydrogen Energy, 2020, 45(58): 33552–33562

    Article  CAS  Google Scholar 

  105. Ghosh D, Roy K, Sarkar K, Devi P, Kumar P. Surface plasmonenhanced carbon dot-embellished multifaceted Si(111) nanoheterostructure for photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2020, 12(25): 28792–28800

    Article  CAS  Google Scholar 

  106. Kumar D, Sharma S, Khare N. Enhanced photoelectrochemical performance of plasmonic Ag nanoparticles grafted ternary Ag/PaNi/NaNbO3 nanocomposite photoanode for photoelectrochemical water splitting. Renewable Energy, 2020, 156: 173–182

    Article  CAS  Google Scholar 

  107. Li H X, Li X, Dong W, Xi J H, Du G, Ji Z G. Cu nanoparticles hybridized with ZnO thin film for enhanced photoelectrochemical oxygen evolution. Journal of Alloys and Compounds, 2018, 768: 830–837

    Article  CAS  Google Scholar 

  108. Li Z, Shi L, Franklin D, Koul S, Kushima A, Yang Y. Drastic enhancement of photoelectrochemical water splitting performance over plasmonic Al@TiO2 heterostructured nanocavity arrays. Nano Energy, 2018, 51: 400–407

    Article  CAS  Google Scholar 

  109. Zheng Z K, Xie W, Huang B B, Dai Y. Plasmon-enhanced solar water splitting on metal-semiconductor photocatalysts. Chemistry (Weinheim an der Bergstrasse, Germany), 2018, 24(69): 18322–18333

    CAS  Google Scholar 

  110. Warren S C, Thimsen E. Plasmonic solar water splitting. Energy & Environmental Science, 2012, 5(1): 5133–5146

    Article  CAS  Google Scholar 

  111. Lee J, Mubeen S, Ji X, Stucky G D, Moskovits M. Plasmonic photoanodes for solar water splitting with visible light. Nano Letters, 2012, 12(9): 5014–5019

    Article  CAS  PubMed  Google Scholar 

  112. Onishi T, Teranishi M, Naya S, Fujishima M, Tada H. Electrocatalytic effect on the photon-to-current conversion efficiency of gold-nanoparticle-loaded titanium(IV) oxide plasmonic electrodes for water oxidation. Journal of Physical Chemistry C, 2020, 124(11): 6103–6109

    Article  CAS  Google Scholar 

  113. Patra B K, Khilari S, Pradhan D, Pradhan N. Hybrid dot-disk Au-CuInS2 nanostructures as active photocathode for efficient evolution of hydrogen from water. Chemistry of Materials, 2016, 28(12): 4358–4366

    Article  CAS  Google Scholar 

  114. Licklederer M, Mohammadi R, Nguyen N T, Park H, Hejazi S, Halik M, Vogel N, Altomare M, Schmuki P. Dewetted Au nanoparticles on TiO2 surfaces: evidence of a size-independent plasmonic photoelectrochemical response. Journal of Physical Chemistry C, 2019, 123(27): 16934–16942

    Article  CAS  Google Scholar 

  115. Dutta A, Pihuleac B, Chen Y, Zong C, Dal Negro L, Yang C. Au@SiO2@Au core-shell-shell nanoparticles for enhancing photocatalytic activity of hematite. Materials Today Energy, 2021, 19: 100576

    Article  CAS  Google Scholar 

  116. Haider R S, Wang S, Gao Y, Malik A S, Ta N, Li H, Zeng B, Dupuis M, Fan F, Li C. Boosting photocatalytic water oxidation by surface plasmon resonance of AgxAu1−x alloy nanoparticles. Nano Energy, 2021, 87: 106189

    Article  CAS  Google Scholar 

  117. Haydous F, Luo S J, Wu K T, Lawley C, Dobeli M, Ishihara T, Lippert T. Surface analysis of perovskite oxynitride thin films as photoelectrodes for solar water splitting. ACS Applied Materials & Interfaces, 2021, 13(31): 37785–37796

    Article  CAS  Google Scholar 

  118. Higashi M, Domen K, Abe R. Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy & Environmental Science, 2011, 4(10): 4138–4147

    Article  CAS  Google Scholar 

  119. Bae D, Seger B, Vesborg P C K, Hansen O, Chorkendorff I. Strategies for stable water splitting via protected photoelectrodes. Chemical Society Reviews, 2017, 46(7): 1933–1954

    Article  CAS  PubMed  Google Scholar 

  120. Ros C, Carretero N M, David J, Arbiol J, Andreu T, Morante J R. Insight into the degradation mechanisms of atomic layer deposited TiO2 as photoanode protective layer. ACS Applied Materials & Interfaces, 2019, 11(33): 29725–29735

    Article  CAS  Google Scholar 

  121. Wang R, Wang L, Zhou Y, Zou Z. Al-ZnO/CdS photoanode modified with a triple functions conformal TiO2 film for enhanced photoelectrochemical efficiency and stability. Applied Catalysis B, 2019, 255: 117738

    Article  CAS  Google Scholar 

  122. Hu S, Lewis N S, Ager J W, Yang J, McKone J R, Strandwitz N C. Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators. Journal of Physical Chemistry C, 2015, 119(43): 24201–24228

    Article  CAS  Google Scholar 

  123. Kenney M J, Gong M, Li Y G, Wu J Z, Feng J, Lanza M, Dai H J. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science, 2013, 342(6160): 836–840

    Article  CAS  PubMed  Google Scholar 

  124. Ros C, Andreu T, David J, Arbiol J, Morante J R. Degradation and regeneration mechanisms of NiO protective layers deposited by ALD on photoanodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(38): 21892–21902

    Article  CAS  Google Scholar 

  125. McDowell M T, Lichterman M F, Spurgeon J M, Hu S, Sharp I D, Brunschwig B S, Lewis N S. Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings. Journal of Physical Chemistry C, 2014, 118(34): 19618–19624

    Article  CAS  Google Scholar 

  126. Fan R L, Dong W, Fang L, Zheng F G, Su X D, Zou S, Huang J, Wang X S, Shen M R. Stable and efficient multi-crystalline n + p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer. Applied Physics Letters, 2015, 106(1): 013902

    Article  CAS  Google Scholar 

  127. Pavlenko M, Siuzdak K, Coy E, Zalęski K, Jancelewicz M, Iatsunskyi I. Enhanced solar-driven water splitting of 1D core-shell Si/TiO2/ZnO nanopillars. International Journal of Hydrogen Energy, 2020, 45(50): 26426–26433

    Article  CAS  Google Scholar 

  128. Ashcheulov P, Taylor A, Mortet V, Poruba A, Le Formal F, Krýsová H, Klementová M, Hubík P, Kopeček J, Lorinčík J, et al. Nanocrystalline boron-doped diamond as a corrosion-resistant anode for water oxidation via Si photoelectrodes. ACS Applied Materials & Interfaces, 2018, 10(35): 29552–29564

    Article  CAS  Google Scholar 

  129. Coy E, Siuzdak K, Grądzka-Kurzaj I, Sayegh S, Weber M, Ziółek M, Bechelany M, Iatsunskyi I. Exploring the effect of BN and B-N bridges on the photocatalytic performance of semiconductor heterojunctions: enhancing carrier transfer mechanism. Applied Materials Today, 2021, 24: 101095

    Article  Google Scholar 

  130. Yang W, Prabhakar R R, Tan J, Tilley S D, Moon J. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chemical Society Reviews, 2019, 48(19): 4979–5015

    Article  CAS  PubMed  Google Scholar 

  131. Zhao X, Luo W J, Feng J Y, Li M X, Li Z S, Yu T, Zou Z G. Quantitative analysis and visualized evidence for high charge separation efficiency in a solid-liquid bulk heterojunction. Advanced Energy Materials, 2014, 4(9): 1301785

    Article  CAS  Google Scholar 

  132. Safa S, Khajeh M, Oveisi A R, Azimirad R, Salehzadeh H. Photocatalytic performance of graphene quantum dot incorporated UiO-66-NH2 composite assembled on plasma-treated membrane. Advanced Powder Technology, 2021, 32(4): 1081–1087

    Article  CAS  Google Scholar 

  133. Sang L X, Lin J, Zhao Y B. Preparation of carbon dots/TiO2 electrodes and their photoelectrochemical activities for water splitting. International Journal of Hydrogen Energy, 2017, 42(17): 12122–12132

    Article  CAS  Google Scholar 

  134. Wang P, Zhou X B, Shao Y, Li D Z, Zuo Z F, Liu X Z. CdS quantum dots-decorated InOOH: facile synthesis and excellent photocatalytic activity under visible light. Journal of Colloid and Interface Science, 2021, 601: 186–195

    Article  CAS  PubMed  Google Scholar 

  135. Wen P, Li H, Ma X, Lei R B, Wang X W, Geyer S M, Qiu Y J. A colloidal ZnTe quantum dot-based photocathode with a metal-insulator-semiconductor structure towards solar-driven CO2 reduction to tunable syngas. Journal of Materials Chemistry A, 2021, 9(6): 3589–3596

    Article  CAS  Google Scholar 

  136. Zhu C, Liu C G, Zhou Y J, Fu Y J, Guo S J, Li H, Zhao S Q, Huang H, Liu Y, Kang Z H. Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting. Applied Catalysis B, 2017, 216: 114–121

    Article  CAS  Google Scholar 

  137. Deshmukh P R, Sohn Y, Shin W G. Chemical synthesis of ZnO nanorods: investigations of electrochemical performance and photo-electrochemical water splitting applications. Journal of Alloys and Compounds, 2017, 711: 573–580

    Article  CAS  Google Scholar 

  138. Mohajernia S, Hejazi S, Mazare A, Nguyen N T, Schmuki P. Photoelectrochemical H2 generation from suboxide TiO2 nanotubes: visible-light absorption versus conductivity. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(50): 12406–12411

    CAS  Google Scholar 

  139. Tiwari J N, Singh A N, Sultan S, Kim K S. Recent advancement of p- and d-block elements, single atoms, and graphene-based photoelectrochemical electrodes for water splitting. Advanced Energy Materials, 2020, 10(24): 2000280

    Article  CAS  Google Scholar 

  140. Cosham S D, Celorrio V, Kulak A N, Hyett G. Observation of visible light activated photocatalytic degradation of stearic acid on thin films of tantalum oxynitride synthesized by aerosol assisted chemical vapour deposition. Dalton Transactions (Cambridge, England), 2019, 48(28): 10619–10627

    Article  CAS  Google Scholar 

  141. Iborra-Torres A, Kulak A N, Palgrave R G, Hyett G. Demonstration of visible light-activated photocatalytic self-cleaning by thin films of perovskite tantalum and niobium oxynitrides. ACS Applied Materials & Interfaces, 2020, 12(30): 33603–33612

    Article  CAS  Google Scholar 

  142. Mami A, Saafi I, Larbi T, Ben Messaoud K, Yacoubi N, Amlouk M. Unraveling the effect of thickness on the structural, morphological, opto-thermal and DFT calculation of hematite Fe2O3 thin films for photo-catalytic application. Journal of Materials Science Materials in Electronics, 2021, 32(13): 17974–17989

    Article  CAS  Google Scholar 

  143. Hou Y, Zuo F, Dagg A, Feng P Y. A three-dimensional branched cobalt-doped alpha-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angewandte Chemie International Edition, 2013, 52(4): 1248–1252

    Article  CAS  PubMed  Google Scholar 

  144. Hou Y, Zuo F, Dagg A P, Liu J K, Feng P Y. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Advanced Materials, 2014, 26(29): 5043–5049

    Article  CAS  PubMed  Google Scholar 

  145. Zhang X, Liu Y, Kang Z H. 3D branched ZnO nanowire arrays decorated with plasmonic Au manoparticles for highperformance photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2014, 6(6): 4480–4489

    Article  CAS  Google Scholar 

  146. Zhang C X, Zhao P Y, Liu S X, Yu K. Three-dimensionally ordered macroporous perovskite materials for environmental applications. Chinese Journal of Catalysis, 2019, 40(9): 1324–1338

    Article  CAS  Google Scholar 

  147. Cho I S, Chen Z B, Forman A J, Kim D R, Rao P M, Jaramillo T F, Zheng X L. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Letters, 2011, 11(11): 4978–4984

    Article  CAS  PubMed  Google Scholar 

  148. Warren S C, Voitchovsky K, Dotan H, Leroy C M, Cornuz M, Stellacci F, Hebert C, Rothschild A, Gratzel M. Identifying champion nanostructures for solar water-splitting. Nature Materials, 2013, 12(9): 842–849

    Article  CAS  PubMed  Google Scholar 

  149. Chen S, Huang D L, Xu P A, Xue W J, Lei L, Cheng M, Wang R Z, Liu X G, Deng R. Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: will we stop with photocorrosion? Journal of Materials Chemistry A, 2020, 8(5): 2286–2322

    Article  CAS  Google Scholar 

  150. Wolcott A, Smith W A, Kuykendall T R, Zhao Y P, Zhang J Z. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small, 2009, 5(1): 104–111

    Article  CAS  PubMed  Google Scholar 

  151. Viter R, Iatsunskyi I, Fedorenko V, Tumenas S, Balevicius Z, Ramanavicius A, Balme S, Kempiński M, Nowaczyk G, Jurga S, et al. Enhancement of electronic and optical properties of ZnO/Al2O3 nanolaminate coated electrospun nanofibers. Journal of Physical Chemistry C, 2016, 120(9): 5124–5132

    Article  CAS  Google Scholar 

  152. Iatsunskyi I, Coy E, Viter R, Nowaczyk G, Jancelewicz M, Baleviciute I, Zaleski K, Jurga S. Study on structural, mechanical, and optical properties of Al2O3-TiO2 nanolaminates prepared by atomic layer deposition. Journal of Physical Chemistry C, 2015, 119(35): 20591–20599

    Article  CAS  Google Scholar 

  153. Wen P, Sun Y H, Li H, Liang Z Q, Wu H H, Zhang J C, Zeng H J, Geyer S M, Jiang L. A highly active three-dimensional Z-scheme ZnO/Au/g-C3N4 photocathode for efficient photoelectrochemical water splitting. Applied Catalysis B, 2020, 263: 118180

    Article  CAS  Google Scholar 

  154. Maeda K, Higashi M, Lu D L, Abe R, Domen K. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. Journal of the American Chemical Society, 2010, 132(16): 5858–5868

    Article  CAS  PubMed  Google Scholar 

  155. Wang X W, Liu G, Chen Z G, Li F, Wang L Z, Lu G Q, Cheng H M. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chemical Communications, 2009(23): 3452–3454

  156. Kato H, Sasaki Y, Iwase A, Kudo A. Role of iron ion electron mediator on photocatalytic overall water splitting under visible light irradiation using Z-scheme systems. Bulletin of the Chemical Society of Japan, 2007, 80(12): 2457–2464

    Article  CAS  Google Scholar 

  157. Chen S S, Vequizo J J M, Pan Z H, Hisatomi T, Nakabayashi M, Lin L H, Wang Z, Kato K, Yamakata A, Shibata N, et al. Surface modifications of (ZnSe)0.5(CuGa2.5Se4.25)0.5 to promote photocatalytic Z-scheme overall water splitting. Journal of the American Chemical Society, 2021, 143(28): 10633–10641

    Article  CAS  PubMed  Google Scholar 

  158. Ng B J, Putri L K, Kong X Y, Pasbakhsh P, Chai S P. Z-scheme photocatalyst sheets with P-doped twinned Zn0.5Cd0.5S1−x and Bi4NbO8Cl connected by carbon electron mediator for overall water splitting under ambient condition. Chemical Engineering Journal, 2021, 404: 127030

    Article  CAS  Google Scholar 

  159. Wang Z L, Chen Z, Dan J D, Chen W Q, Zhou C H, Shen Z X, Sum Z C, Wang X S. Improving photoelectrochemical activity of ZnO/TiO2 core-shell nanostructure through Ag nanoparticle integration. Catalysts, 2021, 11(8): 911

    Article  CAS  Google Scholar 

  160. Lyu S, Farre Y, Ducasse L, Pellegrin Y, Toupance T, Olivier C, Odobel F. Push-pull ruthenium diacetylide complexes: new dyes for p-type dye-sensitized solar cells. RSC Advances, 2016, 6(24): 19928–19936

    Article  CAS  Google Scholar 

  161. Lyu S, Massin J, Pavone M, Munoz-Garcia A B, Labrugere C, Toupance T, Chavarot-Kerlidou M, Artero V, Olivier C. H2-evolving dye-sensitized photocathode based on a rutheniumdiacetylide/cobaloxime supramolecular assembly. ACS Applied Energy Materials, 2019, 2(7): 4971–4980

    Article  CAS  Google Scholar 

  162. Massin J, Lyu S, Pavone M, Munoz-Garcia A B, Kauffmann B, Toupance T, Chavarot-Kerlidou M, Artero V, Olivier C. Design and synthesis of novel organometallic dyes for NiO sensitization and photo-electrochemical applications. Dalton Transactions (Cambridge, England), 2016, 45(31): 12539–12547

    Article  CAS  Google Scholar 

  163. Brillet J, Yum J H, Cornuz M, Hisatomi T, Solarska R, Augustynski J, Graetzel M, Sivula K. Highly efficient water splitting by a dual-absorber tandem cell. Nature Photonics, 2012, 6(12): 823–827

    Article  CAS  Google Scholar 

  164. Kim J K, Shin K, Cho S M, Lee T W, Park J H. Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: application to unassisted solar water splitting. Energy & Environmental Science, 2011, 4(4): 1465–1470

    Article  CAS  Google Scholar 

  165. Fu X C, Chang H, Shang Z C, Liu P L, Liu J K, Luo H A. Three-dimensional Cu2O nanorods modified by hydrogen treated Ti3C2Tx MXene with enriched oxygen vacancies as a photocathode and a tandem cell for unassisted solar water splitting. Chemical Engineering Journal, 2020, 381: 122001

    Article  CAS  Google Scholar 

  166. Peerakiatkhajohn P, Yun J H, Wang S C, Wang L Z. Review of recent progress in unassisted photoelectrochemical water splitting: from material modification to configuration design. Journal of Photonics for Energy, 2017, 7(1): 012006

    Article  Google Scholar 

  167. Kim J H, Jo Y, Kim J H, Jang J W, Kang H J, Lee Y H, Kim D S, Jun Y, Lee J S. Wireless solar water splitting device with robust cobalt-catalyzed, dual-doped BiVO4 photoanode and perovskite solar cell in tandem: a dual absorber artificial leaf. ACS Nano, 2015, 9(12): 11820–11829

    Article  CAS  PubMed  Google Scholar 

  168. Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M K, Park N G, Tilley S D, Fan H J, Gratzel M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345(6204): 1593–1596

    Article  CAS  PubMed  Google Scholar 

  169. Wang S C, Chen P, Bai Y, Yun J H, Liu G, Wang L Z. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Advanced Materials, 2018, 30(20): 1800486

    Article  CAS  Google Scholar 

  170. Bera S, Lee S A, Lee W J, Kim J H, Kim C, Kim H G, Khan H, Jana S, Jang H W, Kwon S H. Hierarchical nanoporous BiVO4 photoanodes with high charge separation and transport efficiency for water oxidation. ACS Applied Materials & Interfaces, 2021, 13(12): 14304–14314

    Article  CAS  Google Scholar 

  171. Mor G K, Varghese O K, Wilke R H T, Sharma S, Shankar K, Latempa T J, Choi K S, Grimes C A. p-Type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Letters, 2008, 8(7): 1906–1911

    Article  CAS  PubMed  Google Scholar 

  172. Oh S, Song H, Oh J. An optically and electrochemically decoupled monolithic photoelectrochemical cell for highperformance solar-driven water splitting. Nano Letters, 2017, 17(9): 5416–5422

    Article  CAS  PubMed  Google Scholar 

  173. Ganesh V, Alizadeh M, Shuhaimi A, Adreen A, Pandikumar A, Jayakumar M, Huang N M, Ramesh R, Baskar K, Rahman S A. Correlation between indium content in monolithic InGaN/GaN multi quantum well structures on photoelectrochemical activity for water splitting. Journal of Alloys and Compounds, 2017, 706: 629–636

    Article  CAS  Google Scholar 

  174. Zhu J J, Gudmundsdottir J B, Strandbakke R, Both K G, Aarholt T, Carvalho P A, Sorby M H, Jensen I J T, Guzik M N, Norby T, Haug H, Chatzitakis A. Double perovskite cobaltites integrated in a monolithic and noble metal-free photoelectrochemical device for efficient water splitting. ACS Applied Materials & Interfaces, 2021, 13(17): 20313–20325

    Article  CAS  Google Scholar 

  175. Ahmet I Y, Berglund S, Chemseddine A, Bogdanoff P, Präg R F, Abdi F F, van de Krol R. Planar and nanostructured n-Si/metal-oxide/WO3/BiVO4 monolithic tandem devices for unassisted solar water splitting. Advanced Energy and Sustainability Research, 2020, 1(2): 2000037

    Article  Google Scholar 

  176. Vanka S, Zhou B W, Awni R A, Song Z N, Chowdhury F A, Liu X D, Hajibabaei H, Shi W, Xiao Y X, Navid I A, et al. InGaN/Si double-junction photocathode for unassisted solar water splitting. ACS Energy Letters, 2020, 5(12): 3741–3751

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Yang Hou acknowledges the funding supports from the National Natural Science Foundation of China (Grant Nos. 2196116074, 21878270, and 221922811), Fundamental Research Funds for the Central Universities (Grant No. 2020XZZX002-09), Zhejiang Provincial Natural Science Foundation of China (Grant No. LR19B060002), Startup Foundation for Hundred-Talent Program of Zhejiang University, Zhejiang Key Laboratory of Marine Materials and Protective Technologies (Grant No. 2020K10), Jiangxi Province “Double Thousand Plan” project (Grant No. 205201000020), Key Laboratory of Marine Materials and Related Technologies, CAS, and the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (Grant No. 2019R01006). Zhibin Liu acknowledges the funding support of the Research Funds of Institute of Zhejiang University-Quzhou.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhibin Liu or Yang Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, S., Younis, M.A., Liu, Z. et al. Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review. Front. Chem. Sci. Eng. 16, 777–798 (2022). https://doi.org/10.1007/s11705-022-2148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2148-0

Keywords

Navigation