Skip to main content
Log in

Component analysis and utilization strategy of brown macroalgae as promising feedstock for sugar platform-based marine biorefinery

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Brown algae have gained attention as a sustainable feedstock for biorefineries due to their ability to sequester carbon dioxide, rapid growth, and high carbohydrate content. The carbohydrate content in brown algae has only been analyzed for a few species, and in most cases, access to fundamental data such as sugar composition is limited, which hinders the assessment of brown algal biomass-based biorefining potential. In this study, the carbohydrate composition of brown algae (Undaria pinnatifida, Saccharina japonica, Ecklonia cava, and Ecklonia stolonifera) was analyzed in detail and application directions were proposed. As a result, alginate and glucan were detected in all resources, and the contents (alginate and glucan wt%) were as follows: U. pinnatifida (39.6 and 4.9 wt%), S. japonica (34.0 and 6.3 wt%), E. cava (24.3 and 7.7 wt%), and E. stolonifera (39.1 and 9.7 wt%). All feedstocks contain trace amounts (2.9–4.9 wt%) or no xylan-mannan-galactan. Mannitol was detected only in S. japonica (26.7 wt%) in rich, showing high potential as a biorefinery feedstock. We highlight that the carbohydrate composition of E. cava and E. stolonifera was analyzed for the first time and the potential use of brown algal biomass in a biorefinery approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yoo HY, Kim SW (2021) The next-generation biomass for biorefining. BioResources 16:2188–2191. https://doi.org/10.15376/biores.16.2.2188-2191

    Article  CAS  Google Scholar 

  2. McElroy CR, Kopanitsa L, Helmes R et al (2023) Integrated biorefinery approach to valorise Saccharina latissima biomass: combined sustainable processing to produce biologically active fucoxanthin, mannitol, fucoidans and alginates. Environ Technol Innov 29:103014. https://doi.org/10.1016/j.eti.2023.103014

    Article  CAS  Google Scholar 

  3. Lee J, Kim M, Jung J et al (2023) Valorization of persimmon calyx, an industrial biowaste, as a potential resource for antioxidant production. Environ Technol Innov 30:103038. https://doi.org/10.1016/j.eti.2023.103038

    Article  CAS  Google Scholar 

  4. Masri MA, Jurkowski W, Shaigani P et al (2018) A waste-free, microbial oil centered cyclic bio-refinery approach based on flexible macroalgae biomass. Appl Energy 224:1–12. https://doi.org/10.1016/j.apenergy.2018.04.089

    Article  CAS  Google Scholar 

  5. Ashokkumar V, Jayashree S, Kumar G et al (2022) Recent developments in biorefining of macroalgae metabolites and their industrial applications - A circular economy approach. Bioresour Technol 359:127235. https://doi.org/10.1016/j.biortech.2022.127235

    Article  CAS  PubMed  Google Scholar 

  6. Lee KH, Chun Y, Lee JH et al (2022) Improved productivity of astaxanthin from photosensitive Haematococcus pluvialis using phototaxis technology. Mar Drugs 20:220. https://doi.org/10.3390/md20040220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Assunção J, Pagels F, Guedes AC (2023) Algae biorefinery: strategies for a sustainable industry. In: Arunkumar K, Arun A, Raja R, Palaniappan R (eds) Algae materials: applications benefitting health. Academic Press, Cambridge

    Google Scholar 

  8. Kargupta W, Kafle SR, Lee Y et al (2023) One-pot treatment of Saccharophagus degradans for polyhydroxyalkanoate production from brown seaweed. Bioresour Technol 385:129392. https://doi.org/10.1016/j.biortech.2023.129392

    Article  CAS  PubMed  Google Scholar 

  9. Slegers PM, Helmes RJK, Draisma M et al (2021) Environmental impact and nutritional value of food products using the seaweed Saccharina latissima. J Clean Prod 319:128689. https://doi.org/10.1016/j.jclepro.2021.128689

    Article  CAS  Google Scholar 

  10. Aasen IM, Sandbakken IS, Toldnes B et al (2022) Enrichment of the protein content of the macroalgae Saccharina latissima and Palmaria palmata. Algal Res 65:102727. https://doi.org/10.1016/j.algal.2022.102727

    Article  Google Scholar 

  11. Song M, Pham HD, Seon J et al (2015) Marine brown algae: a conundrum answer for sustainable biofuels production. Renew Sustain Energy Rev 50:782–792. https://doi.org/10.1016/j.rser.2015.05.021

    Article  CAS  Google Scholar 

  12. Lee KH, Jang YW, Lee J et al (2021) Statistical optimization of alkali pretreatment to improve sugars recovery from spent coffee grounds and utilization in lactic acid fermentation. Processes 9:494. https://doi.org/10.3390/pr9030494

    Article  CAS  Google Scholar 

  13. Kognou ALM, Chio C, Khatiwada JR et al (2023) Coculture and immobilization of cellulolytic bacteria for enhanced glucose isomerase production from wheat straw. Biotechnol Bioprocess Eng 28:327–335. https://doi.org/10.1007/s12257-022-0254-y

    Article  CAS  Google Scholar 

  14. Lee J, Lee KH, Kim S et al (2023) Improved production of bacterial cellulose using Gluconacetobacter sp LYP25, a strain developed in UVC mutagenesis with limited viability conditions. Int J Biol Macromol 232:123230. https://doi.org/10.1016/j.ijbiomac.2023.123230

    Article  CAS  PubMed  Google Scholar 

  15. Son J, Lee KH, Lee T et al (2022) Enhanced production of bacterial cellulose from Miscanthus as sustainable feedstock through statistical optimization of culture conditions. Int J Environ Res Public Health 19:866. https://doi.org/10.3390/ijerph19020866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee J, Lee KH, Kim S et al (2022) Microbial production of bacterial cellulose using chestnut shell hydrolysates by Gluconacetobacter xylinus ATCC 53524. J Microbiol Biotechnol 32:1479–1484. https://doi.org/10.4014/jmb.2208.08022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim BC, Park JW, Kim YH (2023) Downstream process development of biobutanol using deep eutectic solvent. Korean J Chem Eng 40:205–214. https://doi.org/10.1007/s11814-022-1265-2

    Article  CAS  Google Scholar 

  18. Han J, Jo Y, Sun H et al (2023) The enzymatic process of macroalgae for conversion into high-tech bioproducts. Biotechnol Bioprocess Eng 28:356–370. https://doi.org/10.1007/s12257-022-0265-8

    Article  CAS  Google Scholar 

  19. Yoo HY, Simkhada JR, Cho SS et al (2011) A novel alkaline lipase from Ralstonia with potential application in biodiesel production. Bioresour Technol 102:6104–6111. https://doi.org/10.1016/j.biortech.2011.02.046

    Article  CAS  PubMed  Google Scholar 

  20. Enquist-Newman M, Faust AM, Bravo DD et al (2014) Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 505:239–243. https://doi.org/10.1038/nature12771

    Article  CAS  PubMed  Google Scholar 

  21. Ghosh S, Sarkar T, Pati S et al (2022) Novel bioactive compounds from marine sources as a tool for functional food development. Front Mar Sci 9:832957. https://doi.org/10.3389/fmars.2022.832957

    Article  Google Scholar 

  22. Lim HG, Kwak DH, Park S et al (2019) Vibrio sp. dhg as a platform for the biorefinery of brown macroalgae. Nat Commun 10:2486. https://doi.org/10.1038/s41467-019-10371-1

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang L, Li X, Zhang X et al (2021) Bacterial alginate metabolism: an important pathway for bioconversion of brown algae. Biotechnol Biofuels 14:158. https://doi.org/10.1186/s13068-021-02007-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jung GY (2022) BT News. http://www.btnews.or.kr/bbs/board.php?bo_table=bt_news&wr_id=506. Accessed 3 Feb 2023

  25. Kang JH, Kim WS (2019) Study on industralization strategy for efficient reuse of seaweed by-products. J Fish Bus Adm 50:1–9. https://doi.org/10.12939/FBA.2019.50.4.001

    Article  CAS  Google Scholar 

  26. Hwang EK, Park CS (2020) Seaweed cultivation and utilization of Korea. Algae 35:107–121. https://doi.org/10.4490/algae.2020.35.5.15

    Article  CAS  Google Scholar 

  27. Park JS, Shin SK, Wu H et al (2020) Evaluation of nutrient bioextraction by seaweed and shellfish. aquaculture in Korea. J World Aquac Soc 52:1118–1134. https://doi.org/10.1111/jwas.12786

    Article  CAS  Google Scholar 

  28. Luo H, Fu Y, Shi J et al (2023) Carbon sink potential and environmental benefits of seaweed: a case study of the seaweed cultivation industry on China coast. Aquaculture 572:739494. https://doi.org/10.1016/j.aquaculture.2023.739494

    Article  Google Scholar 

  29. Shao Z, Zhang P, Lu C et al (2019) Transcriptome sequencing of Saccharina japonica sporophytes during whole developmental periods reveals regulatory networks underlying alginate and mannitol biosynthesis. BMC Genomics 20:975. https://doi.org/10.1186/s12864-019-6366-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Van Wychen S, Laurens LML (2016) Determination of total carbohydrates in algal biomass: laboratory analytical procedure (LAP). https://www.nrel.gov/docs/fy16osti/60957.pdf

  31. Schiener P, Black KD, Stanley MS et al (2015) The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J Appl Phycol 27:363–373. https://doi.org/10.1007/s10811-014-0327-1

    Article  CAS  Google Scholar 

  32. Dharshini RS, Fathima AA, Dharani SR et al (2020) Utilization of alginate from brown macroalgae for ethanol production by Clostridium phytofermentans. Appl Biochem Microbiol 56:173–178. https://doi.org/10.1134/S0003683820020040

    Article  CAS  Google Scholar 

  33. Shan T, Pang S (2021) Breeding in the economically important brown alga Undaria pinnatifida: a concise review and future prospects. Front Genet 12:801937. https://doi.org/10.3389/fgene.2021.801937

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee YJ (2004) A study on mineral and alginic acid contents by different parts of sea mustards(Undaria pinnatifida). Korean J Food Culture 19:691–700

    Google Scholar 

  35. Skriptsova A, Khomenko V, Isakov V (2004) Seasonal changes in growth rate, morphology and alginate content in Undaria pinnatifida at the northern limit in the Sea of Japan (Russia). J Appl Phycol 16:17–21. https://doi.org/10.1023/B:JAPH.0000019049.74140.61

    Article  CAS  Google Scholar 

  36. Zhao XB, Pang SJ, Liu F et al (2016) Intraspecific crossing of Saccharina japonica using distantly related unialgal gametophytes benefits kelp farming by improving blade quality and productivity at Sanggou Bay, China. J Appl Phycol 28:449–455. https://doi.org/10.1007/s10811-015-0597-2

    Article  Google Scholar 

  37. Obluchinskaya ED (2008) Comparative chemical composition of the Barents Sea brown algae. Appl Biochem Microbiol 44:305–309. https://doi.org/10.1134/S0003683808030149

    Article  CAS  Google Scholar 

  38. Zhao Y, Bourgougnon N, Lanoisellé JL et al (2022) Biofuel production from seaweeds: a comprehensive review. Energies 15:9395. https://doi.org/10.3390/en15249395

    Article  CAS  Google Scholar 

  39. Veeragurunathan V, Mantri VA, Grace PG (2023) Seaweed biotechnology implications to aquaculture. In: Lakra WS, Goswami M, Trudeau VL (eds) Frontiers in aquaculture biotechnology. Academic Press, Cambridge

    Google Scholar 

  40. Hwang EK, Gong YG, Hwang IK et al (2013) Cultivation of the two perennial brown algae Ecklonia cava and E. stolonifera for abalone feeds in Korea. J Appl Phycol 25:825–829. https://doi.org/10.1007/s10811-012-9941-y

    Article  Google Scholar 

  41. Salehi B, Sharifi-Rad J, Seca AML et al (2019) Current trends on seaweeds: looking at chemical composition, phytopharmacology, and cosmetic applications. Molecules 24:4182. https://doi.org/10.3390/molecules24224182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iravani S, Varma RS (2022) Alginate-based micro- and nanosystems for targeted cancer therapy. Mar Drugs 20:598. https://doi.org/10.3390/md20100598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bi D, Yang X, Yao L et al (2022) Potential food and nutraceutical applications of alginate: a review. Mar Drugs 20:564. https://doi.org/10.3390/md20090564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takeda H, Yoneyama F, Kawai S et al (2011) Bioethanol production from marine biomass alginate by genetically engineered bacteria. Energy Environ Sci 4:2575–2581. https://doi.org/10.1039/C1EE01236C

    Article  CAS  Google Scholar 

  45. Hou X, From N, Angelidaki I et al (2017) Butanol fermentation of the brown seaweed Laminaria digitata by Clostridium beijerinckii DSM-6422. Bioresour Technol 238:16–21. https://doi.org/10.1016/j.biortech.2017.04.035

    Article  CAS  PubMed  Google Scholar 

  46. Chen P, Zhu Y, Men Y et al (2018) Purification and characterization of a novel alginate lyase from the marine bacterium Bacillus sp. Alg07. Mar Drugs 16:86. https://doi.org/10.3390/md16030086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dou W, Wei D, Li H et al (2013) Purification and characterisation of a bifunctional alginate lyase from novel Isoptericola halotolerans CGMCC 5336. Carbohydr Polym 98:1476–1482. https://doi.org/10.1016/j.carbpol.2013.07.050

    Article  CAS  PubMed  Google Scholar 

  48. Sun C, Zhou J, Duan G et al (2020) Hydrolyzing Laminaria japonica with a combination of microbial alginate lyase and cellulase. Bioresour Technol 311:123548. https://doi.org/10.1016/j.biortech.2020.123548

    Article  CAS  PubMed  Google Scholar 

  49. Sharma S, Horn SJ (2016) Enzymatic saccharification of brown seaweed for production of fermentable sugars. Bioresour Technol 213:155–161. https://doi.org/10.1016/j.biortech.2016.02.090

    Article  CAS  PubMed  Google Scholar 

  50. Gao S, Zhang Z, Li S et al (2018) Characterization of a new endo-type polysaccharide lyase (PL) family 6 alginate lyase with cold-adapted and metal ions-resisted property. Int J Biol Macromol 120:729–735. https://doi.org/10.1016/j.ijbiomac.2018.08.164

    Article  CAS  PubMed  Google Scholar 

  51. Ma Y, Li J, Zhang XY et al (2020) Characterization of a new intracellular alginate lyase with metal ions-tolerant and pH-stable properties. Mar Drugs 18:416. https://doi.org/10.3390/md18080416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wargacki AJ, Leonard E, Win MN et al (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:308–313. https://doi.org/10.1126/science.1214547

    Article  CAS  PubMed  Google Scholar 

  53. Zhu BW, Huang LS, Tan HD et al (2015) Characterization of a new endo-type polyM-specific alginate lyase from Pseudomonas sp. Biotechnol Lett 37:409–415. https://doi.org/10.1007/s10529-014-1685-0

    Article  CAS  PubMed  Google Scholar 

  54. Jeong DW, Hyeon JE, Lee ME et al (2021) Efficient utilization of brown algae for the production of Polyhydroxybutyrate (PHB) by using an enzyme complex immobilized on Ralstonia eutropha. Int J Biol Macromol 189:819–825. https://doi.org/10.1016/j.ijbiomac.2021.08.149

    Article  CAS  PubMed  Google Scholar 

  55. Jy L, Li P, Lee J et al (2013) Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Bioresour Technol 127:119–125. https://doi.org/10.1016/j.biortech.2012.09.122

    Article  CAS  Google Scholar 

  56. He Q, Wang Q, Zhou H et al (2018) Highly crystalline cellulose from brown seaweed Saccharina japonica: isolation, characterization and microcrystallization. Cellulose 25:5523–5533. https://doi.org/10.1007/s10570-018-1966-1

    Article  CAS  Google Scholar 

  57. Woo S, Moon JH, Sung J et al (2022) Recent advances in the utilization of brown macroalgae as feedstock for microbial biorefinery. Biotechnol Bioprocess Eng 27:879–889. https://doi.org/10.1007/s12257-022-0301-8

    Article  CAS  Google Scholar 

  58. Hakvåg S, Nærdal I, Heggeset TMB et al (2020) Production of value-added chemicals by Bacillus methanolicus strains cultivated on mannitol and extracts of seaweed Saccharina latissima at 50°C. Front Microbiol 11:680. https://doi.org/10.3389/fmicb.2020.00680

    Article  PubMed  PubMed Central  Google Scholar 

  59. Schultze-Jena A, Vroon RC, Macleod AKA et al (2022) Production of acetone, butanol, and ethanol by fermentation of Saccharina latissima: cultivation, enzymatic hydrolysis, inhibitor removal, and fermentation. Algal Res 62:102618. https://doi.org/10.1016/j.algal.2021.102618

    Article  Google Scholar 

  60. Zhang W, Mao Y, Liu Z et al (2022) Ethanol production from Colpomenia sinuosa by an alginate fermentation strain Meyerozyma guilliermondii. Indian J Microbiol 62:112–122. https://doi.org/10.1007/s12088-021-00985-9

    Article  CAS  PubMed  Google Scholar 

  61. Tan IS, Lee KT (2014) Enzymatic hydrolysis and fermentation of seaweed solid wastes for bioethanol production: an optimization study. Energy 78:53–62. https://doi.org/10.1016/j.energy.2014.04.080

    Article  CAS  Google Scholar 

  62. Gurung A, Van Ginkel SW, Kang WC et al (2012) Evaluation of marine biomass as a source of methane in batch tests: a lab-scale study. Energy 43:396–401. https://doi.org/10.1016/j.energy.2012.04.005

    Article  CAS  Google Scholar 

  63. Lee SM, Lee JH (2011) The isolation and characterization of simultaneous saccharification and fermentation microorganisms for Laminaria japonica utilization. Bioresour Technol 102:5962–5967. https://doi.org/10.1016/j.biortech.2011.02.006

    Article  CAS  PubMed  Google Scholar 

  64. Ji SQ, Wang B, Lu M et al (2016) Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila. Biotechnol Biofuels 9:81. https://doi.org/10.1186/s13068-016-0494-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shin HJ, Woo S, Jung GY et al (2023) Indole-3-acetic acid production from alginate by Vibrio sp. dhg: physiology and characteristics. Biotechnol Bioprocess Eng 28:695–703. https://doi.org/10.1007/s12257-023-0056-x

    Article  CAS  Google Scholar 

  66. Lima FA, Martins PA, de Morais WG et al (2023) Immobilization of commercial acid phosphatases from wheat germ and potato onto ion exchangers. Korean J Chem Eng 40:2263–2270. https://doi.org/10.1007/s11814-023-1458-3

    Article  CAS  Google Scholar 

  67. Shin H, Lee J, Bae J et al (2023) Enhancement of dieckol extraction yield from Ecklonia cava through optimization of major variables in generally recognized as safe solvent-based process. Front Mar Sci 10:1287047. https://doi.org/10.3389/fmars.2023.1287047

    Article  Google Scholar 

  68. Lee J, Kim K, Son J et al (2022) Improved productivity of naringin oleate with flavonoid and fatty acid by efficient enzymatic esterification. Antioxidants (Basel) 11:242. https://doi.org/10.3390/antiox11020242

    Article  CAS  PubMed  Google Scholar 

  69. Son J, Lee H, Lee T et al (2023) Novel synthetic pathway for methyl 3-hydroxybutyrate from β-hydroxybutyric acid and methanol by enzymatic esterification. J Ind Eng Chem 1223:355–360. https://doi.org/10.1016/j.jiec.2023.03.052

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (Grant No. 20220258).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hah Young Yoo or Chulhwan Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Shin, H., Lee, K.H. et al. Component analysis and utilization strategy of brown macroalgae as promising feedstock for sugar platform-based marine biorefinery. Biotechnol Bioproc E 29, 377–386 (2024). https://doi.org/10.1007/s12257-024-00022-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-024-00022-8

Keywords

Navigation