Skip to main content
Log in

Sustainable microalgal biomass as a potential functional food and its applications in food industry: a comprehensive review

  • Agricultural Biomass Reuse and Transformation and its Application in Energy and Environment
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microalgae (MA) are the most abundant seaweeds with high nutritional properties. They are accepted as potential biocatalysts for the bioremediation of wastewater. They are widely used in food, feed, and biofuel industries and can potentially be food for future generations. MA-based purification of wastewater technology could be a universal alternative solution for the recovery of resources from wastewater for low-cost biomass feedstock for industry. They provide a wide range of functional components, viz. omega-3 fatty acids, along with a plenteous number of pigments such as ß-carotene, astaxanthin, lutein, phycocyanin, and chlorophyll, which are used extensively as food additives and nutraceuticals. Further, proteins, lipids, vitamins, and carbohydrates are described as nutritional characteristics in MA. They are investigated as single-cell protein, thickening/stabilizing agents, and pigment sources in the food industry. The review emphasizes the production and extraction of nutritional and functional components of algal biomass and the role of microalgal polysaccharides in digestion and nutritional absorption in the gastrointestinal tract. Further, the use of MA in the food industry was also investigated along with their potential therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Amaro HM, Fernandes F, Valentão P, Andrade PB, Sousa-Pinto I, Malcata FX, Guedes AC (2015) Effect of solvent system on extractability of lipidic components of Scenedesmus obliquus (M2–1) and Gloeothece sp. on antioxidant scavenging capacity thereof. Mar Drugs 13(10):6453–6471

    Article  CAS  Google Scholar 

  • Arun S, Sinharoy A, Pakshirajan K, Lens PN (2020) Algae based microbial fuel cells for wastewater treatment and recovery of value-added products. Renew Sustain Energy Rev 132:110041

    Article  CAS  Google Scholar 

  • Alami AH, Alasad S, Ali M, Alshamsi M (2021) Investigating algae for CO2 capture and accumulation and simultaneous production of biomass for biodiesel production. Sci total environ 759:143529

  • Balci Yuce H, Lektemur Alpan A, Gevrek F, Toker H (2018) Investigation of the effect of astaxanthin on alveolar bone loss in experimental periodontitis. J Periodontal Res 53(1):131–138. https://doi.org/10.1111/jre.12497

    Article  CAS  Google Scholar 

  • Basu S, Roy AS, Mohanty K, Ghoshal AK (2014) CO2 biofixation and carbonic anhydrase activity in Scenedesmus obliquus SA1 cultivated in large scale open system. Bioresour Technol 164:323–330

    Article  CAS  Google Scholar 

  • Batista AP, Nunes MC, Raymundo A, Gouveia L, Sousa I, Cordobés F, Guerrero A, Franco JM (2011) MA biomass interaction in biopolymer gelled systems. Food Hydrocolloids 25(4):817–825. https://doi.org/10.1016/J.FOODHYD.2010.09.018

    Article  CAS  Google Scholar 

  • Batista AP, Niccolai A, Fradinho P, Fragoso S, Bursic I, Rodolfi L, Biondi N, Tredici MR, Sousa I, Raymundo A (2017) MA biomass as an alternative ingredient in cookies: sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Res 26:161–171. https://doi.org/10.1016/J.ALGAL.2017.07.017

    Article  Google Scholar 

  • Bazarnova J, Nilova L, Trukhina E, Bernavskaya M, Smyatskaya Y, Aktar T (2021) Use of MA biomass for fortification of food products from grain. Foods 10(12):3018. https://doi.org/10.3390/FOODS10123018

    Article  CAS  Google Scholar 

  • Beal CM, Gerber LN, Sills DL, Huntley ME, Machesky SC, Walsh MJ, Tester JW, Archibald I, Granados J, Greene CH (2015) Algal biofuel production for fuels and feed in a 100-ha facility: a comprehensive techno-economic analysis and life cycle assessment. Algal Res 10:266–279. https://doi.org/10.1016/J.ALGAL.2015.04.017

    Article  Google Scholar 

  • Becker EW (2017) Nutritional properties of microalgae: potentials and constraints. In Handbook of Microalgal Mass Culture (1986) (pp 339–420). CRC press

  • Bernaerts TMM, Gheysen L, Foubert I, Hendrickx ME, van Loey AM (2019) The potential of MA and their biopolymers as structuring ingredients in food: a review. Biotechnol Adv 37(8). https://doi.org/10.1016/J.BIOTECHADV.2019.107419

  • Bito T, Okumura E, Fujishima M, Watanabe F (2020) Potential of Chlorella as a dietary supplement to promote human health. Nutrients 12(9):1–21. https://doi.org/10.3390/nu12092524. (MDPI AG)

    Article  CAS  Google Scholar 

  • Begum H, Yusoff FM, Banerjee S, Khatoon H, Shariff M (2016) Availability and utilization of pigments from microalgae. Crit rev food sci nutr 56(13):2209–2222

  • Bleakley S, Hayes M (2017) Algal proteins: extraction, application, and challenges concerning production. Foods 6(5):33

  • Bosshardt DD (2018) The periodontal pocket: pathogenesis, histopathology and consequences. Periodontol 76(1):43–50. https://doi.org/10.1111/prd.12153. (Blackwell Munksgaard)

    Article  Google Scholar 

  • Caporgno MP and Mathys A (2018a) Trends in MA incorporation into innovative food products with potential health benefits. In: Frontiers in Nutrition (Vol 5). Frontiers Media S.A. https://doi.org/10.3389/fnut.2018.00058

  • Caporgno MP, Mathys A (2018b) Trends in MA incorporation into innovative food products with potential health benefits. Front Nutr 5:58. https://doi.org/10.3389/FNUT.2018.00058

    Article  Google Scholar 

  • Castillejo N, Martínez-Hernández GB, Goffi V, Gómez PA, Aguayo E, Artés F, Artés-Hernández F (2018) Natural vitamin B12 and fucose supplementation of green smoothies with edible algae and related quality changes during their shelf life. J Sci Food Agric 98(6):2411–2421. https://doi.org/10.1002/jsfa.8733

    Article  CAS  Google Scholar 

  • Cheah WY, Show PL, Chang JS, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by MA. Biores Technol 184:190–201

    Article  CAS  Google Scholar 

  • Chen W, Liu Y, Song L, Sommerfeld M, Hu Q (2020) Automated accelerated solvent extraction method for total lipid analysis of MA. Algal Res 51:102080

    Article  Google Scholar 

  • Corbo MR, Bevilacqua A, Petruzzi L, Casanova FP, Sinigaglia M (2014) Functional beverages: the emerging side of functional foods: commercial trends, research, and health implications. Comp Rev Food Sci Food Safe 13(6):1192–1206. https://doi.org/10.1111/1541-4337.12109

    Article  CAS  Google Scholar 

  • da Silva Ferreira V, Sant’Anna C (2017) Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J Microbiol Biotechnol 33(1):20

  • de Jesus Raposo MF, de Morais RMSC, de Morais AMMB (2013) Health applications of bioactive compounds from marine MA. Life Sci 93(15):479–486. https://doi.org/10.1016/J.LFS.2013.08.002

    Article  Google Scholar 

  • Deas DE, Moritz AJ, Sagun RS, Gruwell SF, Powell CA (2016) Scaling and root planing vs.conservative surgery in the treatment of chronic periodontitis. Periodontology 2000 71(1):128–139

  • Dubey KK, Kumar S, Dixit D, Kumar P, Kumar D, Jawed A, Haque S (2015) Implication of industrial waste for biomass and lipid production in Chlorella minutissima under autotrophic, heterotrophic, and mixotrophic grown conditions. Appl biochem biotechnol 176:1581–1595

  • El Basuini MF, Shahin SA, Eldenary ME, Elshora SM, Dawood MA, Mourad MM (2022) Growth variables, feed efficacy, survival rate, and antioxidant capacity of European seabass (Dicentrarchus labrax L.) larvae treated with Coenzyme Q10 or lipoic acid. Aquaculture Reports 27:101373

  • Ferreira A, Guerra I, Costa M, Silva J, Gouveia L (2021) Future perspectives of MA in the food industry. In: Cultured MA for the food industry: current and potential applications (pp 387–433). Elsevier. https://doi.org/10.1016/B978-0-12-821080-2.00008-3

  • Ferrazzano GF, Papa C, Pollio A, Ingenito A, Sangianantoni G, Cantile T (2020) Cyanobacteria and microalgae as sources of functional foods to improve human general and oral health. Mol 25(21):5164

  • Figueiredo F, Encarnação T, Campos MG (2016) Algae as functional foods for the elderly. Food Nutr Sci 07(12):1122–1148. https://doi.org/10.4236/fns.2016.712107

    Article  CAS  Google Scholar 

  • Fradique Ḿ, Batista AP, Nunes MC, Gouveia L, Bandarra NM, Raymundo A (2010) Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. J Sci Food Agric 90(10):1656–1664. https://doi.org/10.1002/jsfa.3999

    Article  CAS  Google Scholar 

  • Galasso C, Gentile A, Orefice I, Ianora A, Bruno A, Noonan DM, Sansone C, Albini A, Brunet C (2019) Microalgal derivatives as potential nutraceutical and food supplements for human health: a focus on cancer prevention and interception. Nutrients 11(6). https://doi.org/10.3390/nu11061226. MDPI AG

  • García-Segovia P, Pagán-Moreno MJ, Lara IF, Martínez-Monzó J (2017) Effect of MA incorporation on physicochemical and textural properties in wheat bread formulation. Food Sci Technol Int 23(5):437–447. https://doi.org/10.1177/1082013217700259

    Article  CAS  Google Scholar 

  • Gong Y, Miao X (2019) Short chain fatty acid biosynthesis in MA Synechococcus sp. PCC 7942. Mar Drugs 17(5):255

    Article  CAS  Google Scholar 

  • Gouveia L, Raymundo A, Batista AP, Sousa I, Empis J (2005) Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. Eur Food Res Technol 222(3):362–367. https://doi.org/10.1007/S00217-005-0105-Z

    Article  Google Scholar 

  • Gouveia L, Batista AP, Miranda A, Empis J, Raymundo A (2007) Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innov Food Sci Emerg Technol 8(3):433–436. https://doi.org/10.1016/j.ifset.2007.03.026

    Article  CAS  Google Scholar 

  • Gupta C (2017) Prebiotic efficiency of blue green algae on probiotics microorganisms. J Microbiol Exp 4(4). https://doi.org/10.15406/jmen.2017.04.00120

  • Hasbay I, Galanakis CM (2018) Recovery technologies and encapsulation techniques. Polyphenols: properties, recovery, and applications, Woodhead Publishing 233–264. https://doi.org/10.1016/B978-0-12-813572-3.00007-5

  • Hassan S, Meenatchi R, Pachillu K, Bansal S, Brindangnanam P, Arockiaraj J, Kiran GS, Selvin J (2022) Identification and characterization of the novel bioactive compounds from MA and cyanobacteria for pharmaceutical and nutraceutical applications. J Basic Microbiol. https://doi.org/10.1002/jobm.202100477. John Wiley and Sons Inc

  • Islam MA, Al Mamun MA, Faruk M, Ul Islam MT, Rahman MM, Alam MN, Rahman AFMT, Reza HM, Alam MA (2017) Astaxanthin ameliorates hepatic damage and oxidative stress in carbon tetrachloride-administered rats. https://doi.org/10.4103/pr.pr_26_17

  • Jiang L, Wang Y, Yin Q, Liu G, Liu H, Huang Y, Li B (2017) Phycocyanin: a potential drug for cancer treatment. J Cancer 8(17):3416–3429. https://doi.org/10.7150/jca.21058

    Article  CAS  Google Scholar 

  • Jung F, Krüger-Genge A, Waldeck P, Küpper JH (2019) Spirulina platensis, a super food? J Cellular Biotechnol 5(1):43–54. https://doi.org/10.3233/JCB-189012

    Article  Google Scholar 

  • Kalra R, Gaur S, Goel M (2021) Microalgae bioremediation: A perspective towards wastewater treatment along with industrial carotenoids production. J Water Process Eng 40:101794

  • Ko SC, Kang N, Kim EA, Kang MC, Lee SH, Kang SM, ..., Jeon YJ (2012) A novel angiotensin I-converting enzyme (ACE) inhibitory peptide from a marine Chlorella ellipsoidea and its antihypertensive effect in spontaneously hypertensive rats. Process Biochem 47(12): 2005–2011

  • Kong CS, Kim JA, Kim SK (2009) Antiobesity effect of sulfated glucosamine by AMPK signal pathway in 3T3-L1 adipocytes. Food Chem Toxicol 47(10):2401–2406. https://doi.org/10.1016/j.fct.2009.06.010

    Article  CAS  Google Scholar 

  • Kratzer R and Murkovic M (2021a) Food ingredients and nutraceuticals from MA: main product classes and biotechnological productionhttps://doi.org/10.3390/foods

  • Kratzer R and Murkovic M (2021b) Food ingredients and nutraceuticals from MA: main product classes and biotechnological production. Foods 10(7). https://doi.org/10.3390/FOODS10071626

  • Kumar Sharma P (2015) Microalgal lipids : a potential source of biodiesel Marker Assisted Selection for Drought Tolerance in Wheat View project Characterization of phytase producing thermotolerant fungus Aspergillus terreus View project. www.jipbs.com

  • Kumoro AC, Johnny D, Alfilovita D (2016) Incorporation of microalgae and seaweed in instant fried wheat noodles manufacturing: nutrition and culinary properties study. Int Food Res J 23(2):715–722

  • Lafarga T, Acién-Fernández FG, Castellari M, Villaró S, Bobo G, Aguiló-Aguayo I (2019) Effect of microalgae incorporation on the physicochemical, nutritional, and sensorial properties of an innovative broccoli soup. Lwt, 111:167–174

  • Lafarga T (2019) Effect of microalgal biomass incorporation into foods: nutritional and sensorial attributes of the end products. In: Algal Research (Vol 41). Elsevier B.V. https://doi.org/10.1016/j.algal.2019.101566

  • Lafarga T, Gallagher E, Bademunt A, Viñas I, Bobo G, Villaró S, Aguiló-Aguayo I (2019) Bioaccessibility, physicochemical, sensorial, and nutritional characteristics of bread containing broccoli co-products. J Food Process Preserv 43(2). https://doi.org/10.1111/jfpp.13861

  • Lalegerie F, Gager L, Stiger-Pouvreau V, Connan S (2020) The stressful life of red and brown seaweeds on the temperate intertidal zone: effect of abiotic and biotic parameters on the physiology of macroalgae and content variability of particular metabolites. Adv Bot Res 95:247–287. https://doi.org/10.1016/bs.abr.2019.11.007

    Article  CAS  Google Scholar 

  • Li H, Zhao Q, Huang H (2019) Current states and challenges of salt-affected soil remediation by cyanobacteria. Sci Total Environ 669:258–272

  • Leney AC, Tschanz A, Heck AJ (2018) Connecting color with assembly in the fluorescent B‐phycoerythrin protein complex. The FEBS J 285(1):178–187

  • López-Bascón MA, De Castro ML (2020) Liquid-Phase Extraction. Elsevier 11:327–354

    Google Scholar 

  • Low KL, Idris A, Yusof NM (2020) Novel protocol optimized for MA lutein used as food additives. Food Chem 307:125631

    Article  CAS  Google Scholar 

  • Lucas BF, de Morais MG, Santos TD, Costa JAV (2018) Spirulina for snack enrichment: nutritional, physical and sensory evaluations. LWT Food Sci Technol 90:270–276. https://doi.org/10.1016/J.LWT.2017.12.032

    Article  CAS  Google Scholar 

  • Junior WGM, Gorgich M, Corrêa PS, Martins AA, Mata TM, Caetano NS (2020) Microalgae for biotechnological applications: Cultivation, harvesting and biomass processing. Aquac 528:735562

  • Matos J, Cardoso C, Bandarra NM, Afonso C (2017) MA as healthy ingredients for functional food: a review. Food Funct 8(8):2672–2685. https://doi.org/10.1039/c7fo00409e. (Royal Society of Chemistry)

    Article  CAS  Google Scholar 

  • Mofasser Hossain AKM, Brennan MA, Mason SL, Guo X, Zeng XA, Brennan CS (2017a) The effect of astaxanthin-rich MA “Haematococcus pluvialis” and wholemeal flours incorporation in improving the physical and functional properties of cookies. Foods 6(8):57. https://doi.org/10.3390/FOODS6080057

    Article  Google Scholar 

  • Mofasser Hossain AKM, Brennan MA, Mason SL, Guo X, Zeng XA, Brennan CS (2017b) The effect of astaxanthin-rich MA “Haematococcus pluvialis” and wholemeal flours incorporation in improving the physical and functional properties of cookies. Foods 6(8):1–10. https://doi.org/10.3390/foods6080057

    Article  CAS  Google Scholar 

  • Molino A, Iovine A, Casella P, Mehariya S, Chianese S, Cerbone A, Rimauro J, Musmarra D (2018) MA characterization for consolidated and new application in human food, animal feed and nutraceuticals. Int J Environ Res Public Health 15(11). https://doi.org/10.3390/ijerph15112436

  • Moreira D, Pires JC (2016) Atmospheric CO2 capture by algae: negative carbon dioxide emission path. Biores Technol 215:371–379

    Article  CAS  Google Scholar 

  • Nagappan S, Das P, AbdulQuadir M, Thaher M, Khan S, Mahata C, Al-Jabri H, Vatland AK, Kumar G (2021) Potential of MA as a sustainable feed ingredient for aquaculture. J Biotechnol 341:1–20. https://doi.org/10.1016/J.JBIOTEC.2021.09.003

    Article  CAS  Google Scholar 

  • Pawar MS, Kadam AS, Dawane BS, Yemul OS (2015) Synthesis and characterization of rigid polyurethane foams from algae oil using biobased chain extenders. Undefined 73(3):727–741. https://doi.org/10.1007/S00289-015-1514-1

    Article  Google Scholar 

  • Piwowar A, Harasym J (2020) The importance and prospects of the use of algae in agribusiness. Sustainability 12(14):5669. https://doi.org/10.3390/SU12145669

    Article  CAS  Google Scholar 

  • Pucci M, Urzì O, Moschetti M, Conigliaro A, Alessandro R, Fontana S (2021) Effects of colon cancer-derived small extracellular vesicles on hepatocytes: New Insights In Liver Pre-Metastatic Niche Formation. J Biol Res 94:1826–8838

  • Rabelo SF, Lemes AC, Takeuchi KP, Frata MT, de Carvalho JCM, Danesi EDG (2013) Development of cassava doughnuts enriched with Spirulina platensis biomass. Braz J Food Technol 16(1):42–51. https://doi.org/10.1590/s1981-67232013005000001

    Article  CAS  Google Scholar 

  • Ramos-Romero S, Torrella JR, Pagès T, Viscor G, Torres JL (2021) Edible MA and their bioactive compounds in the prevention and treatment of metabolic alterations. Nutrients 13(2):1–16. https://doi.org/10.3390/nu13020563. (MDPI AG)

    Article  CAS  Google Scholar 

  • Ranadheer P, Kona R, Sreeharsha RV, Mohan SV (2019) Non-lethal nitrate supplementation enhances photosystem II efficiency in mixotrophic MA towards the synthesis of proteins and lipids. Biores Technol 283:373–377

    Article  CAS  Google Scholar 

  • Raymundo A, Gouveia L, Batista AP, Empis J, Sousa I (2005) Fat mimetic capacity of Chlorella vulgaris biomass in oil-in-water food emulsions stabilized by pea protein. Food Res Int 38(8–9):961–965. https://doi.org/10.1016/J.FOODRES.2005.02.016

    Article  CAS  Google Scholar 

  • Rehman S, Ali M, Zuber M, Zia KM, Iqbal R (2017) Future prospects of algae-based materials. Algae Based Polymers, Blends, and Composites: Chem Biotechnol Mater Sci 687–691. https://doi.org/10.1016/B978-0-12-812360-7.00020-3

  • Robertson RC, Gracia Mateo MR, O’Grady MN, Guihéneuf F, Stengel DB, Ross RP, Fitzgerald GF, Kerry JP, Stanton C (2016) An assessment of the techno-functional and sensory properties of yoghurt fortified with a lipid extract from the microalga Pavlova lutheri. Innov Food Sci Emerg Technol 37:237–246. https://doi.org/10.1016/j.ifset.2016.03.017

    Article  Google Scholar 

  • Rodríguez De Marco E, Steffolani ME, Martínez CS, León AE (2014) Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT Food Sci Technol 58(1):102–108. https://doi.org/10.1016/j.lwt.2014.02.054

    Article  CAS  Google Scholar 

  • Rzymski P, Budzulak J, Niedzielski P, Klimaszyk P, Proch J, Kozak L, Poniedziałek B (2018) Essential and toxic elements in commercial microalgal food supplements. https://doi.org/10.1007/s10811-018-1681-1

  • Saha SK, Murray P (2018) Exploitation of MA species for nutraceutical purposes: cultivation aspects. Fermentation 4:46. https://doi.org/10.3390/fermentation4020046

    Article  CAS  Google Scholar 

  • Sahni P, Aggarwal P, Sharma S, Singh B (2019a) Nuances of microalgal technology in food and nutraceuticals: a review. Nutr Food Sci 49(5):866–885. https://doi.org/10.1108/NFS-01-2019-0008. (Emerald Group Holdings Ltd)

    Article  Google Scholar 

  • Sahni P, Sharma S, Singh B (2019b) Evaluation and quality assessment of defatted MA meal of Chlorella as an alternative food ingredient in cookies. Nutr Food Sci 49(2):221–231. https://doi.org/10.1108/NFS-06-2018-0171

    Article  Google Scholar 

  • Sannasimuthu A, Kumaresan V, Anilkumar S, Pasupuleti M, Ganesh MR, Mala K, Paray BA, Al-Sadoon MK, Albeshr MF, Arockiaraj J (2019) Design and characterization of a novel Arthrospira platensis glutathione oxido-reductase-derived antioxidant peptide GM15 and its potent anticancer activity via caspase-9 mediated apoptosis in oral cancer cells. Free Radical Biol Med 135:198–209. https://doi.org/10.1016/j.freeradbiomed.2019.03.006

    Article  CAS  Google Scholar 

  • Santos TD, de Freitas BCB, Moreira JB, Zanfonato K, Costa JAV (2016) Development of powdered food with the addition of Spirulina for food supplementation of the elderly population. Innov Food Sci Emerg Technol 37:216–220. https://doi.org/10.1016/j.ifset.2016.07.016

    Article  CAS  Google Scholar 

  • Saranraj P, Sivasakthi S (2014) Asian Journal of Pharmaceutical Science & Technology Spirulina platensis-food for future: a review. www.ajpst.com

  • Sathasivam R, Ki JS (2018) A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Mar drugs 16(1):26

  • Ścieszka S, Klewicka E (2019) Algae in food: a general review. Crit Rev Food Sci Nutr 59(21):3538–3547. https://doi.org/10.1080/10408398.2018.1496319. (Taylor and Francis Inc)

    Article  CAS  Google Scholar 

  • Singh G, Patidar SK (2018) MA harvesting techniques: a review. J Environ Manage 217:499–508

    Article  Google Scholar 

  • Spiegelman BM, Flier JS (2001) Obesity and the regulation of energy balance. cell 104(4):531–543

  • Ventura SPM, Nobre BP, Ertekin F, Hayes M, Garciá-Vaquero M, Vieira F, ..., Palavra AMF (2017) Extraction of value-added compounds from MA. In:MA-based biofuels and bioproducts (pp 461–483). Woodhead Publishing

  • Vieira MV, Oliveira SM, Amado IR, Fasolin LH, Vicente AA, Pastrana LM, Fuciños P (2020) 3D printed functional cookies fortified with Arthrospira platensis: evaluation of its antioxidant potential and physical-chemical characterization. Food Hydrocolloids 107:105893. https://doi.org/10.1016/J.FOODHYD.2020.105893

    Article  CAS  Google Scholar 

  • Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29(2):949–982. https://doi.org/10.1007/s10811-016-0974-5. (Springer Netherlands)

    Article  CAS  Google Scholar 

  • Who (2007) Protein and amino acid requirements in human nutrition. World Health Organ tech rep ser (935):1

  • Wilson MH, Shea A, Groppo J, Crofcheck C, Quiroz D, Quinn JC, Crocker M (2021) Algae-based beneficial re-use of carbon emissions using a novel photobioreactor: A techno-economic and life cycle analysis. Biol Energy Res 14:292–302

  • Wu C, Xiong W, Dai J, Wu Q (2015) Genome-based metabolic mapping and 13C flux analysis reveal systematic properties of an oleaginous microalga Chlorella protothecoides. Plant physiol 167(2):586–599

  • Yang Z, Hou J, Miao L (2021) Harvesting freshwater MA with natural polymer flocculants. Algal Res 57:102358

    Article  Google Scholar 

  • Yin Z, Zhu L, Li S, Hu T, Chu R, Mo F, ..., Li B (2020) A comprehensive review on cultivation and harvesting of MA for biodiesel production: environmental pollution control and future directions. Bioresour Technol 301:122804

  • Ying K, Zimmerman WB, Gilmour DJ (2014) Effects of CO and pH on growth of the microalga Dunaliella salina. J Microb Biochem Technol 6(3):167–173

    Article  Google Scholar 

  • Zhang QW, Lin LG, Ye WC (2018) Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med 13:1–26

    Article  Google Scholar 

  • Zheng LX, Chen XQ, Cheong KL (2020) Current trends in marine algae polysaccharides: the digestive tract, microbial catabolism, and prebiotic potential. Int J Biol Macromol 151:344–354. https://doi.org/10.1016/j.ijbiomac.2020.02.168. (Elsevier B.V)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by the Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India, and Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Narayanpur, Malda, West Bengal for conducting this review. No public, commercial, or nonprofit funding organization provided a specific grant for conducting this review.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: OB, KKD; writing—original draft: AD, OB, KKD; writing review and editing: OB, TM, RVS, TA, RS, AWW, YAS, RS; resources: OB; supervision: OB, KKD. All authors were involved in the preparation of the final draft.

Corresponding author

Correspondence to Kshirod Kumar Dash.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Corresponding and all the co-authors are willing to participate in this manuscript.

Consent for publication

All authors are willing to publish this manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhandwal, A., Bashir, O., Malik, T. et al. Sustainable microalgal biomass as a potential functional food and its applications in food industry: a comprehensive review. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-024-33431-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11356-024-33431-6

Keywords

Navigation