Skip to main content
Log in

Coculture and Immobilization of Cellulolytic Bacteria for Enhanced Glucose Isomerase Production from Wheat Straw

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Coculture and whole-cell immobilization have myriad industrial applications for enhancing enzyme production. Using pretreated wheat straw as the sole carbon source, improving glucose isomerase production and cell growth by synthetic bacterial consortia was investigated. Thirteen cocultures were constructed based on the performance and antagonistic activities of monocultures from six cellulolytic soil bacteria. The performance of monocultures immobilized with calcium alginate was also tested. Only five cocultures (A, B, C, G and J) exhibited cell growth and enzyme production synergies. The highest level of synergism (15.17 U/mL) was found in coculture J composed of Mycobacterium sp. MKAL3 (4.06 U/mL) and Stenotrophomonas sp. MKAL4 (3.37 U/mL) with a synergism degree of 2.04. The synergism was unique to growth on wheat straw as it was completely absent in xylose-grown cocultures. The wheat straw degradation synergism could rely on specific compounds released by the MKAL3 strain that promote the activity of the MKAL4 strain and vice versa. However, immobilized strains MKAL1, MKAL2, MKAL3, MKAL4 and MKAL5 improved glucose isomerase production in the wheat straw fermentation process at different sodium alginate concentrations. Immobilization studies of purified glucose isomerases for hydrolysis and saccharification of wheat straw are now being conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Deng, Y. J. and S. Y. Wang (2017) Complex carbohydrates reduce the frequency of antagonistic interactions among bacteria degrading cellulose and xylan. FEMS Microbiol. Lett. 364: fnx019.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cortes-Tolalpa, L., J. F. Salles, and J. D. van Elsas (2017) Bacterial synergism in lignocellulose biomass degradation - complementary roles of degraders as influenced by complexity of the carbon source. Front. Microbiol. 8: 1628.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sarkar, D., S. Nanda, K. Poddar, and A. Sarkar (2022) Isolation and characterization of an antibacterial compound producing Stenotrophomonas strain from sewage water, production optimization, and its antibiotic potential evaluation. Environ. Qual. Manag. 31: 51–62.

    Google Scholar 

  4. Chhetri, G., I. Kim, J. Kim, Y. So, and T. Seo (2022) Chryseobacterium tagetis sp. nov., a plant growth promoting bacterium with an antimicrobial activity isolated from the roots of medicinal plant (Tagetes patula). J. Antibiot. (Tokyo) 75: 312–320.

    Article  CAS  PubMed  Google Scholar 

  5. Cortes-Tolalpa, L., J. Norder, J. D. van Elsas, and J. Falcao Salles (2018) Halotolerant microbial consortia able to degrade highly recalcitrant plant biomass substrate. Appl. Microbiol. Biotechnol. 102: 2913–2927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kong, X., J. Du, X. Ye, Y. Xi, H. Jin, M. Zhang, and D. Guo (2018) Enhanced methane production from wheat straw with the assistance of lignocellulolytic microbial consortium TC-5. Bioresour. Technol. 263: 33–39.

    Article  CAS  PubMed  Google Scholar 

  7. Lazuka, A., L. Auer, M. O’Donohue, and G. Hernandez-Raquet (2018) Anaerobic lignocellulolytic microbial consortium derived from termite gut: enrichment, lignocellulose degradation and community dynamics. Biotechnol. Biofuels 11: 284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brémond, U., A. Bertrandias, J. Hamelin, K. Milferstedt, V. Bru-Adan, J. P. Steyer, N. Bernet, and H. Carrere (2022) Screening and application of ligninolytic microbial consortia to enhance aerobic degradation of solid digestate. Microorganisms 10: 277.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kabaivanova, L., V. Hubenov, L. Dimitrova, I. Simeonov, H. Wang, and P. Petrova (2022) Archaeal and bacterial content in a two-stage anaerobic system for efficient energy production from agricultural wastes. Molecules 27: 1512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Serrano, L., E. Rincón, A. García, J. Rodríguez, and R. Briones (2020) Bio-degradable polyurethane foams produced by liquefied polyol from wheat straw biomass. Polymers (Basel) 12: 2646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tomás-Pejó, E., J. Fermoso, E. Herrador, H. Hernando, S. Jiménez-Sánchez, M. Ballesteros, C. González-Fernández, and D. P. Serrano (2017) Valorization of steam-exploded wheat straw through a biorefinery approach: bioethanol and bio-oil coproduction. Fuel (Lond.) 199: 403–412.

    Article  Google Scholar 

  12. Lozano, F. J. and R. Lozano (2018) Assessing the potential sustainability benefits of agricultural residues: biomass conversion to syngas for energy generation or to chemicals production. J. Clean. Prod. 172: 4162–4169.

    Article  CAS  Google Scholar 

  13. Ruiz, H. A., M. A. Cerqueira, H. D. Silva, R. M. Rodríguez-Jasso, A. A. Vicente, and J. A. Teixeira (2013) Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydr. Polym. 92: 2154–2162.

    Article  CAS  PubMed  Google Scholar 

  14. Domínguez-Robles, J., R. Sánchez, P. Díaz-Carrasco, E. Espinosa, M. T. García-Domínguez, and A. Rodríguez (2017) Isolation and characterization of lignins from wheat straw: application as binder in lithium batteries. Int. J. Biol. Macromol. 104: 909–918.

    Article  PubMed  Google Scholar 

  15. Lou, W. Y., J. Fernández-Lucas, J. Ge, and C. Wu (2021) Editorial: enzyme or whole cell immobilization for efficient biocatalysis: focusing on novel supporting platforms and immobilization techniques. Front. Bioeng. Biotechnol. 9: 620292.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jin, Y. Y., Y. D. Li, W. Sun, S. Fan, X. Z. Feng, K. Y. Wang, W. Q. He, and Z. Y. Yang (2016) The whole-cell immobilization of d-hydantoinase-engineered Escherichia coli for d-CpHPG biosynthesis. Electron. J. Biotechnol. 21: 43–48.

    Article  Google Scholar 

  17. Sharma, H. K., C. Xu, and W. Qin (2021) Isolation of bacterial strain with xylanase and xylose/glucose isomerase (GI) activity and whole cell immobilization for improved enzyme production. Waste Biomass Valorization 12: 833–845.

    Article  CAS  Google Scholar 

  18. Kumaravel, V. and S. R. Gopal (2010) Immobilization of Bacillus amyloliquefaciens MBL27 cells for enhanced antimicrobial protein production using calcium alginate beads. Biotechnol. Appl. Biochem. 57: 97–103.

    Article  CAS  PubMed  Google Scholar 

  19. Lee, S. E., H. Y. Lee, and K. H. Jung (2013) Production of chlorphenesin galactoside by whole cells of β-galactosidase-containing Escherichia coli. J. Microbiol. Biotechnol. 23: 826–832.

    Article  CAS  PubMed  Google Scholar 

  20. Mokale Kognou, A. L., C. Chio, J. R. Khatiwada, S. Shrestha, X. Chen, H. Li, Y. Zhu, Z.-H. Jiang, C. C. Xu, and W. Qin (2022) Characterization of glucose isomerase-producing bacteria and optimization of fermentation conditions for producing glucose isomerase using biomass. Green Chem. Eng. Advance online publication. https://doi.org/10.1016/j.gce.2022.05.003

  21. Mokale Kognou, A. L., C. Chio, J. R. Khatiwada, S. Shrestha, X. Chen, S. Han, H. Li, Z. H. Jiang, C. C. Xu, and W. Qin (2022) Characterization of cellulose-degrading bacteria isolated from soil and the optimization of their culture conditions for cellulase production. Appl. Biochem. Biotechnol. 194: 5060–5082.

    Article  CAS  PubMed  Google Scholar 

  22. Burkholder, P. R., R. M. Pfister, and F. H. Leitz (1966) Production of a pyrrole antibiotic by a marine bacterium. Appl. Microbiol. 14: 649–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsumura, N. and T. Sato (1965) Enzymatic conversion of d-glucose to d-fructose: part V partial purification and properties of the enzyme from Aerobacter cloacae part VI, properties of the enzyme from Streptomyces phaeochromogenus. Agric. Biol. Chem. 29: 1123–1134.

    CAS  Google Scholar 

  24. Anisha, G. S. and P. Prema (2008) Cell immobilization technique for the enhanced production of alpha-galactosidase by Streptomyces griseoloalbus. Bioresour. Technol. 99: 3325–3330.

    Article  CAS  PubMed  Google Scholar 

  25. Efimenko, T. A., I. A. Malanicheva, B. F. Vasil’eva, A. A. Glukhova, I. G. Sumarukova, Y. V. Boikova, N. D. Malkina, L. P. Terekhova, and O. V. Efremenkova (2016) Antibiotic activity of bacterial endobionts of basidiomycete fruit bodies. Microbiology (N. Y.) 85: 752–758.

    CAS  Google Scholar 

  26. Dahal, R. H., D. K. Chaudhary, D. U. Kim, R. P. Pandey, and J. Kim (2021) Chryseobacterium antibioticum sp. nov. with antimicrobial activity against Gram-negative bacteria, isolated from Arctic soil. J. Antibiot. (Tokyo) 74: 115–123.

    Article  CAS  PubMed  Google Scholar 

  27. Rafieenia, R., E. Atkinson, and R. Ledesma-Amaro (2022) Division of labor for substrate utilization in natural and synthetic microbial communities. Curr. Opin. Biotechnol. 75: 102706.

    Article  CAS  PubMed  Google Scholar 

  28. Deng, Y. J. and S. Y. Wang (2016) Synergistic growth in bacteria depends on substrate complexity. J. Microbiol. 54: 23–30.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li, X., D. Meng, J. Li, H. Yin, H. Liu, X. Liu, C. Cheng, Y. Xiao, Z. Liu, and M. Yan (2017) Response of soil microbial communities and microbial interactions to long-term heavy metal contamination. Environ. Pollut. 231: 908–917.

    Article  CAS  PubMed  Google Scholar 

  30. Rafieenia, R., A. Pivato, and M. C. Lavagnolo (2018) Effect of inoculum pre-treatment on mesophilic hydrogen and methane production from food waste using two-stage anaerobic digestion. Int. J. Hydrogen Energy 43: 12013–12022.

    Article  CAS  Google Scholar 

  31. Tshikantwa, T. S., M. W. Ullah, F. He, and G. Yang (2018) Current trends and potential applications of microbial interactions for human welfare. Front. Microbiol. 9: 1156.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zheng, H., J. Perreau, J. E. Powell, B. Han, Z. Zhang, W. K. Kwong, S. G. Tringe, and N. A. Moran (2019) Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proc. Natl. Acad. Sci. U. S. A. 116: 25909–25916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Markakiou, S., P. Gaspar, E. Johansen, A. A. Zeidan, and A. R. Neves (2020) Harnessing the metabolic potential of Streptococcus thermophilus for new biotechnological applications. Curr. Opin. Biotechnol. 61: 142–152.

    Article  CAS  PubMed  Google Scholar 

  34. Blair, E. M., K. L. Dickson, and M. A. O’Malley (2021) Microbial communities and their enzymes facilitate degradation of recalcitrant polymers in anaerobic digestion. Curr. Opin. Microbiol. 64: 100–108.

    Article  CAS  PubMed  Google Scholar 

  35. Romero Marcia, A. D., T. Yao, M.-H. Chen, R. E. Oles, and S. R. Lindemann (2021) Fine carbohydrate structure governs the structure and function of human gut microbiota independently of variation in glycosyl residue composition. BioRxivhttps://doi.org/10.1101/2021.04.22.441052

  36. Xu, Z., Z. Lu, T. Soteyome, Y. Ye, T. Huang, J. Liu, J. M. Harro, B. V. Kjellerup, and B. M. Peters (2021) Polymicrobial interaction between Lactobacillus and Saccharomyces cerevisiae: coexistence-relevant mechanisms. Crit. Rev. Microbiol. 47: 386–396.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu, Y. (2007) Immobilized cell fermentation for production of chemicals and fuels. pp. 373–396. In: S.-T. Yang (ed.). Bioprocessing for Value-Added Products from Renewable Resources: New Technologies and Applications. Elsevier, Amsterdam, Netherlands.

    Chapter  Google Scholar 

  38. Jobanputra, A. H., B. A. Karode, and S. B. Chincholkar (2011) Calcium alginate as supporting material for the immobilization of rifamycin oxidase from Chryseobacterium species. Biotechnol. Bioinform. Bioeng. 1: 529–535.

    Google Scholar 

  39. Jia, D. X., T. Wang, Z. J. Liu, L. Q. Jin, J. J. Li, C. J. Liao, D. S. Chen, and Y. G. Zheng (2018) Whole cell immobilization of refractory glucose isomerase using tris(hydroxymethyl)phosphine as crosslinker for preparation of high fructose corn syrup at elevated temperature. J. Biosci. Bioeng. 126: 176–182.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the Natural Science and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-2017-05366) to WQ.

Author information

Authors and Affiliations

Authors

Contributions

WQ, CCX, ZHJ and ALMK contributed to the study conception and experimental design. The material preparation, data collection, curation data and analysis were carried out by ALMK. The manuscript draft was originally written by ALMK and edited by CC, JRK, SS, XC, YZ, RANN, GAA, ZHJ, CCX and WQ. The supervision and project administration were provided by WQ. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Wensheng Qin.

Ethics declarations

The authorsdeclare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kognou, A.L.M., Chio, C., Khatiwada, J.R. et al. Coculture and Immobilization of Cellulolytic Bacteria for Enhanced Glucose Isomerase Production from Wheat Straw. Biotechnol Bioproc E 28, 327–335 (2023). https://doi.org/10.1007/s12257-022-0254-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0254-y

Keywords

Navigation