Skip to main content
Log in

Canonical Identification at Infinity for Ricci-Flat Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We give a natural way to identify between two scales, potentially arbitrarily far apart, in a non-compact Ricci-flat manifold with Euclidean volume growth when a tangent cone at infinity has smooth cross section. The identification map is given as the gradient flow of a solution to an elliptic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Birkhäuser, Basel (2017)

    Google Scholar 

  2. Cheeger, J., Colding, T.H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. 144(1), 189–237 (1996)

    Article  MathSciNet  Google Scholar 

  3. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below, I. J. Differ. Geom. 46(3), 406–480 (1997)

    Article  MathSciNet  Google Scholar 

  4. Perelman, G.: Example of a complete Riemannian manifold of positive Ricci curvature with Euclidean volume growth and with nonunique asymptotic cone. Comp. Geom., MSRI Publ. 30, 165–166 (1997)

    MATH  Google Scholar 

  5. Colding, T.H., Naber, A.: Characterization of tangent cones of noncollapsed limits with lower Ricci bounds and applications. Geom. Funct. Anal. 23(1), 134–148 (2013)

    Article  MathSciNet  Google Scholar 

  6. Hattori, K.: The nonuniqueness of the tangent cones at infinity of Ricci-flat manifolds. Geom. Topol. 21(5), 2683–2723 (2017)

    Article  MathSciNet  Google Scholar 

  7. Colding, T.H., Minicozzi, W.P., II.: On uniqueness of tangent cones of Einstein manifolds. Invent. Math. 196(3), 515–588 (2014)

    Article  MathSciNet  Google Scholar 

  8. Tian, G., Yau, S.-T.: Complete Kähler manifolds with zero Ricci curvature, II. Invent. Math. 106(1), 27–60 (1991)

    Article  MathSciNet  Google Scholar 

  9. Conlon, R., Hein, H.-J.: Asymptotically conical Calabi-Yau manifolds, I. Duke Math. J. 162(15), 2855–2902 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Conlon, R., Hein, H.-J.: Asymptotically conical Calabi-Yau metrics on quasi-projective varieties. Geom. Funct. Anal. 25(2), 517–552 (2015)

    Article  MathSciNet  Google Scholar 

  11. Chen, X., Wang, Y.: On the long time behaviour of the conical Kähler-Ricci flows. J. Reine Angew. Math. 744, 165–199 (2018)

    MathSciNet  MATH  Google Scholar 

  12. G. Székelyhidi, Degenerations of \(\mathbb{C}^n\) and Calabi-Yau metrics, to appear in Duke Math. J. Preprint at arXiv: 1706.00357v2

  13. G. Székelyhidi, Uniqueness of some Calabi-Yau metrics on \(\mathbb{C}^n\). Preprint at arXiv: 1906.11107

  14. Martelli, D., Sparks, J., Yau, S.-T.: The geometric dual of \(\alpha \)-maximisation for toric Sasaki-Einstein manifolds. Commun. Math. Phys. 268(1), 39–65 (2006)

    Article  MathSciNet  Google Scholar 

  15. Martelli, D., Sparks, J., Yau, S.-T.: Sasaki-Einstein manifolds and volume minimisation. Commun. Math. Phys. 280(3), 611–673 (2008)

    Article  MathSciNet  Google Scholar 

  16. Boyer, C.P., Galicki, K.: Sasakian Geometry. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  17. Van Coevering, C.: Ricci-flat Kähler metrics on crepant resolutions of Kähler cones. Math. Ann. 347(3), 581–611 (2010)

    Article  MathSciNet  Google Scholar 

  18. Kronheimer, B.: The construction of ALE spaces as hyper-Kähler quotients. J. Differ. Geom. 29(3), 665–683 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Varopoulos, NTh.: The Poisson kernel on positively curved manifolds. J. Funct. Anal. 44(3), 359–380 (1981)

    Article  MathSciNet  Google Scholar 

  20. Colding, T.H.: New monotonicity formulas for Ricci curvature and applications. I. Acta Math. 209(2), 229–263 (2012)

    Article  MathSciNet  Google Scholar 

  21. Colding, T.H., Minicozzi, W.P., II.: Large scale behavior of kernels of Schrödinger operators. Am J. Math. 119(6), 1355–1398 (1997)

    Article  Google Scholar 

  22. Colding, T.H., Minicozzi, W.P., II.: Ricci curvature and monotonicity for harmonic functions. Calc. Var. Partial. Differ. Equ. 49(3–4), 1045–1059 (2014)

    Article  MathSciNet  Google Scholar 

  23. Agostiniani, V., Mazzieri, L.: Monotonicity formulas in potential theory. Preprint at arXiv: 1606.02489v3

  24. Fogagnolo, M., Mazzieri, L., Pinamonti, A.: Geometric aspects of \(p\)-capacitary potentials. Ann. I. H. Poincaré Anal. Non Lineáire. 36(4), 1151–1179 (2019)

    Article  MathSciNet  Google Scholar 

  25. Agostiniani, V., Fogagnolo, M., Mazzieri, L.: Minkowski inequalities via nonlinear potential theory. Preprint at arXiv:1906.00322v2

  26. Colding, T.H., Minicozzi, W.P., II.: Monotonicity and its analytic and geometric implications. Proc. Natl. Acad. Sci. USA 110(48), 19233–19236 (2013)

    Article  MathSciNet  Google Scholar 

  27. Cheeger, J., Tian, G.: On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay. Invent. Math. 118(3), 493–572 (1994)

    Article  MathSciNet  Google Scholar 

  28. Donaldson, S., Sun, S.: Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, II. J. Differ. Geom. 107(2), 327–371 (2017)

    Article  Google Scholar 

  29. Hein, H.-J., Sun, S.: Calabi-Yau manifolds with isolated conical singularities. Publ. Math. Inst. Hautes Études Sci. 126(1), 73–130 (2017)

    Article  MathSciNet  Google Scholar 

  30. Colding, T.H., Naber, A.: Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. Math. 176(2), 1173–1229 (2012)

    Article  MathSciNet  Google Scholar 

  31. Colding, T.H.: Ricci curvature and volume convergence. Ann. Math. 145(3), 477–501 (1997)

    Article  MathSciNet  Google Scholar 

  32. Mok, N., Siu, Y.-T., Yau, S.-T.: The Poincaré-Lelong equation on complete Kähler manifolds. Compos. Math. 44(1–3), 188–218 (1981)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor Tobias Holck Colding for numerous helpful discussions. The author was partially supported by NSF Grant DMS-1812142.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiewon Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J. Canonical Identification at Infinity for Ricci-Flat Manifolds. J Geom Anal 32, 8 (2022). https://doi.org/10.1007/s12220-021-00738-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-021-00738-6

Keywords

Mathematics Subject Classification

Navigation