Skip to main content
Log in

Calabi-Yau manifolds with isolated conical singularities

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

Let \(X\) be a complex projective variety with only canonical singularities and with trivial canonical bundle. Let \(L\) be an ample line bundle on \(X\). Assume that the pair \((X,L)\) is the flat limit of a family of smooth polarized Calabi-Yau manifolds. Assume that for each singular point \(x \in X\) there exist a Kähler-Einstein Fano manifold \(Z\) and a positive integer \(q\) dividing \(K_{Z}\) such that \(-\frac{1}{q}K_{Z}\) is very ample and such that the germ \((X,x)\) is locally analytically isomorphic to a neighborhood of the vertex of the blow-down of the zero section of \(\frac{1}{q}K_{Z}\). We prove that up to biholomorphism, the unique weak Ricci-flat Kähler metric representing \(2\pi c_{1}(L)\) on \(X\) is asymptotic at a polynomial rate near \(x\) to the natural Ricci-flat Kähler cone metric on \(\frac{1}{q}K_{Z}\) constructed using the Calabi ansatz. In particular, our result applies if \((X, \mathcal{O}(1))\) is a nodal quintic threefold in \(\mathbf {P}^{4}\). This provides the first known examples of compact Ricci-flat manifolds with non-orbifold isolated conical singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abraham, J. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications, 2nd ed., Applied Mathematical Sciences, vol. 75, Springer, New York, 1988.

    Book  MATH  Google Scholar 

  2. A. Ache and J. Viaclovsky, Obstruction-flat asymptotically locally Euclidean metrics, Geom. Funct. Anal., 22 (2012), 832–877.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. Fr., 90 (1962), 193–259.

    Article  MATH  Google Scholar 

  4. C. Arezzo and C. Spotti, On cscK resolutions of conically singular cscK varieties, J. Funct. Anal., 271 (2016), 474–494.

    Article  MathSciNet  MATH  Google Scholar 

  5. W. Ballmann, Lectures on Kähler Manifolds, ESI Lectures in Mathematics and Physics, Eur. Math. Soc., Zürich, 2006.

    Book  MATH  Google Scholar 

  6. S. Bando and T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, in Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, pp. 11–40, North-Holland, Amsterdam, 1987.

    Google Scholar 

  7. C. Bănică, Le lieu réduit et le lieu normal d’un morphisme, in Romanian-Finnish Seminar on Complex Analysis, Bucharest, 1976, Lecture Notes in Math., vol. 743, pp. 389–398, Springer, Berlin, 1979.

    Chapter  Google Scholar 

  8. T. Behrndt, On the Cauchy problem for the heat equation on Riemannian manifolds with conical singularities, Q. J. Math., 64 (2013), 981–1007.

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Berline, E. Getzler and M. Vergne, Heat Kernels and Dirac Operators, Grundlehren Text Editions, Springer, Berlin, 2004.

    MATH  Google Scholar 

  10. R. Berman, \(K\)-Polystability of \(\mathbf {Q}\)-Fano varieties admitting Kähler-Einstein metrics, Invent. Math., 203 (2016), 973–1025.

    Article  MathSciNet  MATH  Google Scholar 

  11. O. Biquard and Y. Rollin, Smoothing singular constant scalar curvature Kähler surfaces and minimal Lagrangians, Adv. Math., 285 (2015), 980–1024.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Sci. Éc. Norm. Supér. (4), 12 (1979), 269–294.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Candelas and X. de la Ossa, Comments on conifolds, Nucl. Phys. B, 342 (1990), 246–268.

    Article  MathSciNet  Google Scholar 

  14. Y-M. Chan, Calabi-Yau and Special Lagrangian 3-folds with conical singularities and their desingularizations, D.Phil. thesis, University of Oxford, 2005, https://people.maths.ox.ac.uk/joyce/theses/theses.html.

  15. J. Cheeger, Spectral geometry of singular Riemannian spaces, J. Differ. Geom., 18 (1983), 575–657.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Cheeger and G. Tian, On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay, Invent. Math., 118 (1994), 493–571.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Colding and W. Minicozzi, On uniqueness of tangent cones for Einstein manifolds, Invent. Math., 196 (2014), 515–588.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Collins and G. Székelyhidi, \(K\)-Semistability for irregular Sasakian manifolds, J. Differ. Geom., preprint, arXiv:1204.2230, to appear.

  19. R. Conlon and H-J. Hein, Asymptotically conical Calabi-Yau manifolds, I, Duke Math. J., 162 (2013), 2855–2900.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Conlon and H-J. Hein, Asymptotically conical Calabi-Yau manifolds, III, preprint, arXiv:1405.7140.

  21. J-P. Demailly and N. Pali, Degenerate complex Monge-Ampère equations over compact Kähler manifolds, Int. J. Math., 21 (2010), 357–405.

    Article  MATH  Google Scholar 

  22. S. Donaldson, Kähler-Einstein Metrics and Algebraic Structures on Limit Spaces, Surveys in Differential Geometry, vol. 21, pp. 85–94, International Press, Somerville, 2016.

    MATH  Google Scholar 

  23. S. Donaldson and S. Sun, Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, Acta Math., 213 (2014), 63–106.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Donaldson and S. Sun, Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, II, J. Differ. Geom., preprint, arXiv:1507.05082, to appear.

  25. P. Eyssidieux, V. Guedj and A. Zeriahi, Singular Kähler-Einstein metrics, J. Am. Math. Soc., 22 (2009), 607–639.

    Article  MATH  Google Scholar 

  26. K. Fujita, Optimal bounds for the volumes of Kähler-Einstein Fano manifolds, Am. J. Math., preprint, arXiv:1508.04578, to appear.

  27. A. Grigoryan and L. Saloff-Coste, Stability results for Harnack inequalities, Ann. Inst. Fourier (Grenoble), 55 (2005), 825–890.

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Gubser, Einstein manifolds and conformal field theories, Phys. Rev. D (3), 59, 025006 (1999), 8 pp.

    Article  MathSciNet  Google Scholar 

  29. H-J. Hein and A. Naber, Isolated Einstein singularities with singular tangent cones, in preparation.

  30. L. Hörmander, \(L^{2}\) estimates and existence theorems for the \(\bar {\partial}\) operator, Acta Math., 113 (1965), 89–152.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Jonsson and M. Mustaţă, Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble), 62 (2012), 2145–2209.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Joyce, Special Lagrangian submanifolds with isolated conical singularities, I, Ann. Glob. Anal. Geom., 25 (2004), 201–251.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Joyce, Special Lagrangian submanifolds with isolated conical singularities, III, Ann. Glob. Anal. Geom., 26 (2005), 1–58.

    Article  MATH  Google Scholar 

  34. C. Li, Minimizing normalized volumes of valuations, preprint, arXiv:1511.08164.

  35. C. Li and Y-C. Liu, Kähler-Einstein metrics and volume minimization, preprint, arXiv:1602.05094.

  36. C. Li and C. Xu, Stability of valuations and Kollár components, preprint, arXiv:1604.05398.

  37. D. Martelli, J. Sparks and S-T. Yau, Sasaki-Einstein manifolds and volume minimisation, Commun. Math. Phys., 280 (2007), 611–673.

    Article  MathSciNet  MATH  Google Scholar 

  38. R. Mazzeo, Elliptic theory of edge operators, I, Commun. Partial Differ. Equ., 16 (1991), 1615–1664.

    Article  MathSciNet  MATH  Google Scholar 

  39. C. Morrey, Multiple Integrals in the Calculus of Variations, Classics in Mathematics, Springer, Berlin, 2008.

    Book  MATH  Google Scholar 

  40. T. Pacini, Desingularizing isolated conical singularities, Commun. Anal. Geom., 21 (2013), 105–170.

    Article  MATH  Google Scholar 

  41. X-C. Rong and Y-G. Zhang, Continuity of extremal transitions and flops for Calabi-Yau manifolds, J. Differ. Geom., 89 (2011), 233–269.

    Article  MathSciNet  MATH  Google Scholar 

  42. E. Shustin and I. Tyomkin, Versal deformation of algebraic hypersurfaces with isolated singularities, Math. Ann., 313 (1999), 297–314.

    Article  MathSciNet  MATH  Google Scholar 

  43. L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. Math. (2), 118 (1983), 525–571.

    Article  MathSciNet  MATH  Google Scholar 

  44. I. Smith and R. Thomas, Symplectic surgeries from singularities, Turk. J. Math., 27 (2003), 231–250.

    MathSciNet  MATH  Google Scholar 

  45. J. Song, On a conjecture of Candelas and de la Ossa, Commun. Math. Phys., 334 (2015), 697–717.

    Article  MathSciNet  MATH  Google Scholar 

  46. C. Spotti, Deformations of nodal Kähler-Einstein del Pezzo surfaces with discrete automorphism groups, J. Lond. Math. Soc., 89 (2014), 539–558.

    Article  MathSciNet  MATH  Google Scholar 

  47. C. Spotti, S. Sun and C-J. Yao, Existence and deformations of Kähler-Einstein metrics on smoothable \(\mathbf {Q}\)-Fano varieties, Duke Math. J., 165 (2016), 3043–3083.

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Stenzel, Ricci-flat metrics on the complexification of a compact rank one symmetric space, Manuscr. Math., 80 (1993), 151–163.

    Article  MathSciNet  MATH  Google Scholar 

  49. V. Tosatti, Limits of Calabi-Yau metrics when the Kähler class degenerates, J. Eur. Math. Soc., 11 (2009), 755–776.

    Article  MathSciNet  MATH  Google Scholar 

  50. K. Uhlenbeck, Removable singularities in Yang-Mills fields, Commun. Math. Phys., 83 (1982), 11–29.

    Article  MathSciNet  MATH  Google Scholar 

  51. C. van Coevering, A construction of complete Ricci-flat Kähler manifolds, preprint, arXiv:0803.0112.

  52. B. Vertman, Ricci flow on singular manifolds, preprint, arXiv:1603.06545.

  53. Y. Wang, On the Kähler-Ricci flows near the Mukai-Umemura 3-fold, Int. Math. Res. Not., 2016 (2015), 2145–2156.

    Article  Google Scholar 

  54. J. Wehler, Deformation of complete intersections with singularities, Math. Z., 179 (1982), 473–491.

    Article  MathSciNet  MATH  Google Scholar 

  55. S-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Commun. Pure Appl. Math., 31 (1978), 339–411.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Sun.

Additional information

H.-J. Hein is partially supported by NSF grant DMS-1514709.

S. Sun is partially supported by NSF grant DMS-1405832 and an Alfred P. Sloan Fellowship.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hein, HJ., Sun, S. Calabi-Yau manifolds with isolated conical singularities. Publ.math.IHES 126, 73–130 (2017). https://doi.org/10.1007/s10240-017-0092-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-017-0092-1

Navigation