Skip to main content
Log in

The Geometric Dual of a–Maximisation for Toric Sasaki–Einstein Manifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the Reeb vector, and hence in particular the volume, of a Sasaki–Einstein metric on the base of a toric Calabi–Yau cone of complex dimension n may be computed by minimising a function Z on \(\mathbb {R}^{n}\) which depends only on the toric data that defines the singularity. In this way one can extract certain geometric information for a toric Sasaki–Einstein manifold without finding the metric explicitly. For complex dimension n  =  3 the Reeb vector and the volume correspond to the R–symmetry and the a central charge of the AdS/CFT dual superconformal field theory, respectively. We therefore interpret this extremal problem as the geometric dual of a–maximisation. We illustrate our results with some examples, including the Y p,q singularities and the complex cone over the second del Pezzo surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gauntlett J.P., Martelli D., Sparks J., Waldram D. (2004): Supersymmetric AdS5 solutions of M-theory. Class. Quant. Grav. 21: 4335

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Gauntlett J.P., Martelli D., Sparks J., Waldram D. (2004): Sasaki–Einstein metrics on S 2  ×  S 3. Adv. Theor. Math. Phys. 8: 711

    MATH  MathSciNet  Google Scholar 

  3. Gauntlett J.P., Martelli D., Sparks J., Waldram D. (2006): A new infinite class of Sasaki-Einstein manifolds. Adv. Theor. Math. Phys. 8: 987–1000

    MathSciNet  Google Scholar 

  4. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)]

  5. Kehagias A. (1998): New type IIB vacua and their F-theory interpretation. Phys. Lett. B 435: 337

    Article  MathSciNet  ADS  Google Scholar 

  6. Klebanov I.R., Witten E. (1998): Superconformal field theory on threebranes at a Calabi-Yau singularity. Nucl. Phys. B 536: 199

    Article  MathSciNet  ADS  Google Scholar 

  7. Acharya B.S., Figueroa-O’Farrill J.M., Hull C.M., Spence B. (1999): Branes at conical singularities and holography. Adv. Theor. Math. Phys. 2: 1249

    MathSciNet  Google Scholar 

  8. Morrison D.R., Plesser M.R. (1999): Non-spherical horizons. I. Adv. Theor. Math. Phys. 3: 1

    MATH  MathSciNet  Google Scholar 

  9. Martelli D., Sparks J. (2006): Toric geometry, Sasaki–Einstein manifolds and a new infinite class of AdS/CFT duals. Commun. Math. Phys. 262: 51–89

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Benvenuti S., Franco S., Hanany A., Martelli D., Sparks J. (2005): An infinite family of superconformal quiver gauge theories with Sasaki–Einstein duals. JHEP 0506: 064

    Article  MathSciNet  ADS  Google Scholar 

  11. Friedrich Th., Kath I. (1989): Einstein manifolds of dimension five with small first eigenvalue of the Dirac operator. J. Differ. Geom. 29: 263–279

    MATH  MathSciNet  Google Scholar 

  12. Tian G. (1987): On Kähler–Einstein metrics on certain Kähler manifolds with c 1(M) > 0. Invent. Math. 89: 225–246

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Tian G., Yau S.T. (1987): On Kähler–Einstein metrics on complex surfaces with C 1 > 0. Commun. Math. Phys. 112: 175–203

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Boyer C.P., Galicki K. (2001): New Einstein metrics in dimension five. J. Differ. Geom. 57(3): 443–463

    MATH  MathSciNet  Google Scholar 

  15. Gauntlett, J.P., Martelli, D., Sparks, J., Waldram, D.: Supersymmetric AdS Backgrounds in String and M-theory. To appear in the Proceedings of the 73rd Meeting between Physicists and Mathematicians “(A)dS/CFT correspondence”, Strasbourg, September 11–13, 2003 de Gruyier, available at http://arXiv.org/list/hep-th/0411194, 2004

  16. Chen W., Lu H., Pope C.N., Vazquez-Poritz J.F. (2005): A note on Einstein–Sasaki metrics in D ≥ 7. Class. Quant. Grav. 22: 3421–3430

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Cheeger J., Tian G. (1994): On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay. Invent. Math. 118(3): 493–571

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Feng B., Hanany A., He Y.H. (2001): D-brane gauge theories from toric singularities and toric duality. Nucl. Phys. B 595: 165

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Feng B., Franco S., Hanany A., He Y.H. (2002): Symmetries of toric duality. JHEP 0212: 076

    Article  MathSciNet  ADS  Google Scholar 

  20. Intriligator K., Wecht B. (2003): The exact superconformal R-symmetry maximizes a. Nucl. Phys. B 667: 183

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Bertolini M., Bigazzi F., Cotrone A.L. (2004): New checks and subtleties for AdS/CFT and a-maximization. JHEP 0412: 024

    Article  MathSciNet  ADS  Google Scholar 

  22. Besse A.L. (1987). Einstein Manifolds 2nd edition. Springer–Verlag, Berlin-Heidelberg-New York

    MATH  Google Scholar 

  23. Guillemin V. (1994): Kähler Structures on Toric Varieties. J. Differ. Geom. 40: 285–309

    MATH  MathSciNet  Google Scholar 

  24. Abreu, M.: Kähler geometry of toric manifolds in symplectic coordinates. In: Batyrev, V. (ed.). To appear in Toric Varieties in Algebraic Geometry and Physics, AMS, available at http://arXiv.org/list/math.DG/0004122, 2000

  25. Donaldson S.K. (2002): Scalar Curvature and Stability of Toric Varieties. J. Differ. Geom. 62: 289–349

    MATH  MathSciNet  Google Scholar 

  26. Donaldson, S.K.: Interior estimates for solutions of Abreu’s equation. http://arXiv.org/list/ math.DG/0407486, 2004

  27. Lerman E. (2003): Contact toric manifolds. J. Symplectic Geom. 1(4): 785–828

    MATH  MathSciNet  Google Scholar 

  28. Falcao de Moraes S., Tomei C. (1997): Moment maps on symplectic cones. Pacific J. Math. 181(2): 357–375

    Article  MathSciNet  Google Scholar 

  29. Delzant T. (1988): Hamiltoniens periodiques et images convexes de l’application moment. Bull. Soc. Math. France 116(3): 315–339

    MATH  MathSciNet  Google Scholar 

  30. Burns, D., Guillemin, V., Lerman, E.: Kaehler metrics on singular toric varieties. http://arXiv.org/list/math.DG/0501311, 2005

  31. Boyer C.P., Galicki K. (2000): A Note on Toric Contact Geometry. J. Geom. Phys. 35(4): 288–298

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Lerman E., Tolman S. (1997): Hamiltonian torus actions on symplectic orbifolds and toric varieties. Trans. Amer. Math. Soc. 349(10): 4201–4230

    Article  MATH  MathSciNet  Google Scholar 

  33. Abreu M. (1998): Kähler geometry of toric varieties and extremal metrics. Int’l. J. Math. 9: 641–651

    Article  MATH  MathSciNet  Google Scholar 

  34. Lasserre J.B. (1999): Integration and homogeneous functions. Proceedings of the American Mathematical Society 127: 813

    Article  MATH  MathSciNet  Google Scholar 

  35. Herzog C.P., Ejaz Q.J., Klebanov I.R. (2005): Cascading RG flows from new Sasaki–Einstein manifolds. JHEP 0502: 009

    Article  MathSciNet  ADS  Google Scholar 

  36. Cvetic M., Lu H., Page D.N., Pope C.N. (2005): New Einstein–Sasaki Spaces in Five and Higher Dimensions. Phys. Rev. Lett. 95: 071101

    Article  MathSciNet  ADS  Google Scholar 

  37. Martelli D., Sparks J. (2005): Toric Sasaki–Einstein metrics on S 2  ×  S 3. Phys. Lett. B 621: 208–212

    Article  MathSciNet  ADS  Google Scholar 

  38. Cvetic, M., Lu, H., Page, D.N., Pope, C.N.: New Einstein-Sasaki and Einstein Spaces from Kerr-de Sitter. http://arXiv.org/list/hep-th/0505223, 2005

  39. Matsushima Y. (1957): Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kaehlérienne. Nagoya Math. J. 11: 145–150

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Sparks.

Additional information

Communicated by G.W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martelli, D., Sparks, J. & Yau, ST. The Geometric Dual of a–Maximisation for Toric Sasaki–Einstein Manifolds. Commun. Math. Phys. 268, 39–65 (2006). https://doi.org/10.1007/s00220-006-0087-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0087-0

Keywords

Navigation