Skip to main content
Log in

Weak scalar curvature lower bounds along Ricci flow

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study Ricci flow on compact manifolds with a continuous initial metric. It was known from Simon (2002) that the Ricci flow exists for a short time. We prove that the scalar curvature lower bound is preserved along the Ricci flow if the initial metric has a scalar curvature lower bound in the distributional sense provided that the initial metric is W1,p for some n < p ⩽ ∞. As an application, we use this result to study the relation between the Yamabe invariant and Ricci flat metrics. We prove that if the Yamabe invariant is nonpositive and the scalar curvature is nonnegative in the distributional sense, then the manifold is isometric to a Ricci flat manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrov A D, Berestovskii V N, Nikolaev I G. Generalized Riemannian spaces. Russian Math Surveys, 1986, 41: 1–54

    Article  MathSciNet  Google Scholar 

  2. Bamler R H. A Ricci flow proof of a result by Gromov on lower bounds for scalar curvature. Math Res Lett, 2016, 23: 325–337

    Article  MathSciNet  MATH  Google Scholar 

  3. Bamler R H, Zhang Q S. Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature. Adv Math, 2017, 319: 396–450

    Article  MathSciNet  MATH  Google Scholar 

  4. Burago D, Burago Y, Ivanov S. A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33. Providence: Amer Math Soc, 2001

    MATH  Google Scholar 

  5. Burkhardt-Guim P. Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow. Geom Funct Anal, 2019, 29: 1703–1772

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao H D, Zhu X P. A complete proof of the Poincaré and geometrization conjectures—application of the Hamilton-Perelman theory of the Ricci flow. Asian J Math, 2006, 10: 165–492

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheeger J. Integral bounds on curvature, elliptic estimates, and rectifiability of singular sets. Geom Funct Anal, 2003, 13: 20–72

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheeger J, Colding T H. On the structure of spaces with Ricci curvature bounded below. I. J Differential Geom, 1997, 45: 406–480

    MathSciNet  MATH  Google Scholar 

  9. Cheeger J, Colding T H. On the structure of spaces with Ricci curvature bounded below. II. J Differential Geom, 2000, 54: 13–35

    MathSciNet  MATH  Google Scholar 

  10. Cheeger J, Colding T H. On the structure of spaces with Ricci curvature bounded below. III. J Differential Geom, 2000, 54: 37–74

    MathSciNet  MATH  Google Scholar 

  11. Cheeger J, Jiang W S, Naber A. Rectifiability of singular sets of noncollapsed limit spaces with Ricci curvature bounded below. Ann of Math (2), 2021, 193: 407–538

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheeger J, Naber A. Lower bounds on Ricci curvature and quantitative behavior of singular sets. Invent Math, 2013, 191: 321–339

    Article  MathSciNet  MATH  Google Scholar 

  13. Colding T H, Naber A. Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann of Math (2), 2012, 176: 1173–1229

    Article  MathSciNet  MATH  Google Scholar 

  14. Grant J D E, Tassotti N. A positive mass theorem for low-regularity Riemannian metrics. arXiv:1408.6425, 2014

  15. Gromov M. Dirac and Plateau billiards in domains with corners. Cent Eur J Math, 2014, 12: 1109–1156

    MathSciNet  MATH  Google Scholar 

  16. Gromov M, Lawson Jr H B. Spin and scalar curvature in the presence of a fundamental group. I. Ann of Math (2), 1980, 111: 209–230

    Article  MathSciNet  MATH  Google Scholar 

  17. Hamilton R S. Three-manifolds with positive Ricci curvature. J Differential Geom, 1982, 17: 255–306

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang W S. Bergman kernel along the Kähler-Ricci flow and Tian’s conjecture. J Reine Angew Math, 2016, 717: 195–226

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang W S, Naber A. L2 curvature bounds on manifolds with bounded Ricci curvature. Ann of Math (2), 2021, 193: 107–222

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang W S, Sheng W M, Zhang H Y. Removable singularity of positive mass theorem with continuous metrics. Math Z, 2022, 302: 839–874

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang W S, Wang F, Zhu X H. Bergman kernels for a sequence of almost Kähler-Ricci solitons. Ann Inst Fourier (Grenoble), 2017, 67: 1279–1320

    Article  MathSciNet  MATH  Google Scholar 

  22. Kazdan J L, Warner F W. Prescribing curvatures. In: Differential Geometry. Proceedings of Symposia in Pure Mathematics, vol. 27. Part 2. Providence: Amer Math Soc, 1975, 309–319

    Chapter  Google Scholar 

  23. Kleiner B, Lott J. Notes on Perelman’s papers. Geom Topol, 2008, 12: 2587–2855

    Article  MathSciNet  MATH  Google Scholar 

  24. Lamm T, Simon M. Ricci flow of W2,2-metrics in four dimensions. arXiv:2109.08541, 2021

  25. Lee D A, LeFloch P G. The positive mass theorem for manifolds with distributional curvature. Comm Math Phys, 2015, 339: 99–120

    Article  MathSciNet  MATH  Google Scholar 

  26. LeFloch P G, Mardare C. Definition and stability of Lorentzian manifolds with distributional curvature. Port Math, 2007, 64: 535–573

    Article  MathSciNet  MATH  Google Scholar 

  27. LeFloch P G, Sormani C. The nonlinear stability of rotationally symmetric spaces with low regularity. J Funct Anal, 2015, 268: 2005–2065

    Article  MathSciNet  MATH  Google Scholar 

  28. Li C, Mantoulidis C. Positive scalar curvature with skeleton singularities. Math Ann, 2019, 374: 99–131

    Article  MathSciNet  MATH  Google Scholar 

  29. Lott J, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann of Math (2), 2009, 169: 903–991

    Article  MathSciNet  MATH  Google Scholar 

  30. McFeron D, Székelyhidi G. On the positive mass theorem for manifolds with corners. Comm Math Phys, 2012, 313: 425–443

    Article  MathSciNet  MATH  Google Scholar 

  31. Miao P. Positive mass theorem on manifolds admitting corners along a hypersurface. Adv Theor Math Phys, 2002, 6: 1163–1182

    Article  MathSciNet  Google Scholar 

  32. Morgan J W, Tian G. Ricci Flow and the Poincaré Conjecture. Providence: Amer Math Soc, 2007

    MATH  Google Scholar 

  33. Perelman G. The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159v1, 2002

  34. Perelman G. Ricci flow with surgery on three-manifolds. arXiv:math/0303109v1, 2003

  35. Perelman G. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv:math/0307245v1, 2003

  36. Schoen R, Yau S T. On the structure of manifolds with positive scalar curvature. Manuscripta Math, 1997, 28: 159–183

    Article  MathSciNet  MATH  Google Scholar 

  37. Shi W X. Deforming the metric on complete Riemannian manifolds. J Differential Geom, 1989, 30: 223–301

    MathSciNet  MATH  Google Scholar 

  38. Shi Y G, Tam L F. Scalar curvature and singular metrics. Pacific J Math, 2017, 293: 427–470

    Article  MathSciNet  MATH  Google Scholar 

  39. Simon M. Deformation of C0 Riemannian metrics in the direction of their Ricci curvature. Comm Anal Geom, 2002, 10: 1033–1074

    Article  MathSciNet  MATH  Google Scholar 

  40. Sormani C. Conjectures on convergence and scalar curvature. arXiv:2103.10093, 2021

  41. Sturm K-T. On the geometry of metric measure spaces. I. Acta Math, 2006, 196: 65–131

    Article  MathSciNet  MATH  Google Scholar 

  42. Sturm K-T. On the geometry of metric measure spaces. II. Acta Math, 2006, 196: 133–177

    Article  MathSciNet  MATH  Google Scholar 

  43. Sturm K-T. A curvature-dimension condition for metric measure spaces. C R Math Acad Sci Paris, 2006, 342: 197–200

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant Nos. 12125105 and 12071425) and the Fundamental Research Funds for the Central Universities. The second author was supported by National Natural Science Foundation of China (Grant Nos. 11971424 and 12031017). The third author was supported by National Natural Science Foundation of China (Grant No. 11971424). The authors thank Professor Dan Lee and Professor Christina Sormani for many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Sheng, W. & Zhang, H. Weak scalar curvature lower bounds along Ricci flow. Sci. China Math. 66, 1141–1160 (2023). https://doi.org/10.1007/s11425-021-2037-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-2037-7

Keywords

MSC(2020)

Navigation