Skip to main content
Log in

Ricci-flat Kähler metrics on crepant resolutions of Kähler cones

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove that a crepant resolution π : YX of a Ricci-flat Kähler cone X admits a complete Ricci-flat Kähler metric asymptotic to the cone metric in every Kähler class in \({H^2_c(Y,\mathbb{R})}\). A Kähler cone \({(X,\bar{g})}\) is a metric cone over a Sasaki manifold (S, g), i.e. \({X=C(S):=S\times\mathbb{R}_{ >0 }}\) with \({\bar{g}=dr^2 +r^2 g}\), and \({(X,\bar{g})}\) is Ricci-flat precisely when (S, g) Einstein of positive scalar curvature. This result contains as a subset the existence of ALE Ricci-flat Kähler metrics on crepant resolutions \({\pi:Y\rightarrow X=\mathbb{C}^n /\Gamma}\), with \({\Gamma\subset SL(n,\mathbb{C})}\), due to P. Kronheimer (n = 2) and D. Joyce (n > 2). We then consider the case when X = C(S) is toric. It is a result of A. Futaki, H. Ono, and G. Wang that any Gorenstein toric Kähler cone admits a Ricci-flat Kähler cone metric. It follows that if a toric Kähler cone X = C(S) admits a crepant resolution π : YX, then Y admits a T n-invariant Ricci-flat Kähler metric asymptotic to the cone metric \({(X,\bar{g})}\) in every Kähler class in \({H^2_c(Y,\mathbb{R})}\). A crepant resolution, in this context, is a simplicial fan refining the convex polyhedral cone defining X. We then list some examples which are easy to construct using toric geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abreu, M.: Kähler geometry of toric manifolds in symplectic coordinates. In: Symplectic and Contact Topology: Interactions and Perspectives (Toronto, ON/Montreal, QC, 2001), vol. 35 of Fields Inst. Commun., pp. 1–24. American Mathematical Society, Providence, RI (2003)

  2. Bando S., Kasue A., Nakajima H.: On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth. Invent. Math. 97(2), 313–349 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boyer, C., Galicki, K.: 3-Sasakian manifolds. In: Surveys in Differential Geometry: Essays on Einstein Manifolds, Surv. Differ. Geom., VI, pp. 123–184. International Press, Boston (1999)

  4. Boyer, C., Galicki, K., Simanca, S.: The Sasaki cone and extremal Sasakian metrics. In: Riemannian Topology and Geometric Structures on Manifolds: in Honor of Charles P. Boyer’s 65th birthday, vol. 271 of Progress in Mathematics, pp. 263–290. Birkhaüser, Boston (2008)

  5. Boyer C.P., Galicki K.: Sasakian geometry, hypersurface singularities, and Einstein metrics. Rend. Circ. Mat. Palermo (2) Suppl. 75, 57–87 (2005)

    MathSciNet  Google Scholar 

  6. Boyer C.P., Galicki K.: Sasakian Geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford (2008)

    Google Scholar 

  7. Boyer C.P., Galicki K., Kollár J.: Einstein metrics on spheres. Ann. Math. (2) 162(1), 557–580 (2005)

    Article  MATH  Google Scholar 

  8. Burns D.: On rational singularities in dimensions > 2. Math. Ann. 211, 237–244 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  9. Burns D., Guillemin V., Lerman E.: Kähler metrics on singular toric varieties. Pac. J. Math. 238(1), 27–40 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Calabi E.: Métriques kählériennes et fibrés holomorphes. Ann. Sci. École Norm. Sup. (4) 12(2), 269–294 (1979)

    MathSciNet  Google Scholar 

  11. Candelas P., de la Ossa X.C.: Comments on conifolds. Nucl. Phys. B 342(1), 246–268 (1990)

    Article  Google Scholar 

  12. Chan Y.-M.: Desingularizations of Calabi-Yau 3-folds with a conical singularity. Q. J. Math. 57(2), 151–181 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cheng S.Y., Yau S.T.: On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation. Commun. Pure Appl. Math. 33(4), 507–544 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cho K., Futaki A., Ono H.: Uniqueness and examples of compact toric Sasaki–Einstein metrics. Commun. Math. Phys. 277(2), 439–458 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Futaki, A., Ono, H., Wang, G.: Transverse Kähler geometry of Sasaki manifolds and toric Sasaki– Einstein manifolds. J. Differ. Geom. (2007, to appear) arXiv:math.DG/0607586 v.5

  16. Gauntlett J.P., Martelli D., Sparks J., Waldram D.: A new infinite class of Sasaki–Einstein manifolds. Adv. Theor. Math. Phys. 8(6), 987–1000 (2004)

    MATH  MathSciNet  Google Scholar 

  17. Gauntlett J.P., Martelli D., Sparks J., Waldram D.: Sasaki–Einstein metrics on S 2 × S 3. Adv. Theor. Math. Phys. 8(4), 711–734 (2004)

    MATH  MathSciNet  Google Scholar 

  18. Gilbarg D., Trudinger N.S.: Elliptic partial differential equations of second order, vol. 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn. Springer, Berlin (1983)

    Google Scholar 

  19. Grauert H.: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146, 331–368 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  20. Guillemin V.: Kaehler structures on toric varieties. J. Differ. Geom. 40(2), 285–309 (1994)

    MATH  MathSciNet  Google Scholar 

  21. Guillemin V.: Moment maps and combinatorial invariants of Hamiltonian T n-spaces, vol. 122 of Progress in Mathematics. Birkhäuser Boston Inc., Boston (1994)

    Google Scholar 

  22. Joyce D.: Asymptotically locally Euclidean metrics with holonomy SU(m). Ann. Global Anal. Geom. 19(1), 55–73 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Joyce D.D.: Compact Manifolds with Special Holonomy. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000)

    Google Scholar 

  24. Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties, vol. 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1998). With the collaboration of C.H. Clemens and A. Corti, Translated from the 1998 Japanese original

  25. Kronheimer P.B.: The construction of ALE spaces as hyper-Kähler quotients. J. Differ. Geom. 29(3), 665–683 (1989)

    MATH  MathSciNet  Google Scholar 

  26. Laufer H.B.: On rational singularities. Am. J. Math. 94, 597–608 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lerman E.: Contact toric manifolds. J. Symplectic Geom. 1(4), 785–828 (2003)

    MATH  MathSciNet  Google Scholar 

  28. Martelli D., Sparks J.: Toric Sasaki–Einstein metrics on S 2 × S 3. Phys. Lett. B 621(1–2), 208–212 (2005)

    MathSciNet  Google Scholar 

  29. Martelli, D., Sparks, J.: Resolutions of non-regular Ricci-flat Kähler cones (2007) arXiv:math.DG/0707.1674 v.2

  30. Martelli D., Sparks J.: Baryonic branches and resolutions of Ricci-flat Kähler cones. J. High Energy Phys. 4, 067, 44 (2008)

    Google Scholar 

  31. Martelli D., Sparks J.: Symmetry-breaking vacua and baryon condensates in AdS/CFT correspondence. Phys. Rev. D 79(6), 065009, 51 (2009)

    Article  MathSciNet  Google Scholar 

  32. Martelli D., Sparks J., Yau S.-T.: The geometric dual of a-maximisation for toric Sasaki–Einstein manifolds. Commun. Math. Phys. 268(1), 39–65 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Matsushima Y.: Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne. Nagoya Math. J. 11, 145–150 (1957)

    MATH  MathSciNet  Google Scholar 

  34. Oda, T.: Convex bodies and algebraic geometry, vol. 15 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, Berlin (1988). An introduction to the theory of toric varieties, Translated from the Japanese

  35. Ornea L., Verbitsky M.: Embeddings of compact Sasakian manifolds. Math. Res. Lett. 14(4), 703–710 (2007)

    MATH  MathSciNet  Google Scholar 

  36. Roan S.-S.: Minimal resolutions of Gorenstein orbifolds in dimension three. Topology 35(2), 489–508 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  37. Tian G., Yau S.-T.: Complete Kähler manifolds with zero Ricci curvature. I. J. Am. Math. Soc. 3(3), 579–609 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  38. Tian G., Yau S.-T.: Complete Kähler manifolds with zero Ricci curvature. II. Invent. Math. 106(1), 27–60 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  39. van Coevering, C.: Examples of asymptotically conical Ricci-flat Kähler manifolds. Math. Z. (2008, to appear) arXiv:math.DG/0812.4745 v.2

  40. van Coevering, C.: A construction of complete Ricci-flat Kähler manifolds (2009) arXiv:math.DG/0803.0112 v.3

  41. Wang X.-J., Zhu X.: Kähler-Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188(1), 87–103 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig van Coevering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Coevering, C. Ricci-flat Kähler metrics on crepant resolutions of Kähler cones. Math. Ann. 347, 581–611 (2010). https://doi.org/10.1007/s00208-009-0446-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0446-1

Keywords

Mathematics Subject Classification (2000)

Navigation