Skip to main content
Log in

Asymptotically conical Calabi–Yau metrics on quasi-projective varieties

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Let X be a compact Kähler orbifold without \({\mathbb{C}}\)-codimension-1 singularities. Let D be a suborbifold divisor in X such that \({D \supset {\rm Sing}(X)}\) and −pK X = q[D] for some \({p, q \in \mathbb{N}}\) with q > p. Assume that D is Fano. We prove the following two main results. (1) If D is Kähler–Einstein, then, applying results from our previous paper (Conlon and Hein, Duke Math J, 162:2855–2902, 2013), we show that each Kähler class on \({X \setminus D}\) contains a unique asymptotically conical Ricci-flat Kähler metric, converging to its tangent cone at infinity at a rate of O(r −1-ε) if X is smooth. This provides a definitive version of a theorem of Tian and Yau (Invent Math, 106:27–60, 1991). (2) We introduce new methods to prove an analogous statement (with rate O(r −0.0128)) when \({X = {\rm Bl}_p \mathbb{P}^{3}}\) and \({D = {\rm Bl}_{p_1,p_2} \mathbb{P}^{2}}\) is the strict transform of a smooth quadric through p in \({\mathbb{P}^3}\). Here D is no longer Kähler–Einstein, but the normal \({\mathbb{S}^1}\)-bundle to D in X admits an irregular Sasaki–Einstein structure which is compatible with its canonical CR structure. This provides the first example of an affine Calabi–Yau manifold of Euclidean volume growth with irregular tangent cone at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate M., Bracci F., Tovena F.: Embeddings of submanifolds and normal bundles. Advances in Mathematics 220, 620–656 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Altmann K.: The versal deformation of an isolated toric Gorenstein singularity. Inventiones Mathematicae 128, 443–479 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baily W. L.: On the imbedding of V-manifolds in projective space. American Journal of Mathematics 79, 403–430 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bando S., Kasue A., Nakajima H.: On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth. Inventiones Mathematicae 97, 313–349 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. W. Barth, C. Peters and A. Van de Ven. Compact complex surfaces. In: Ergebnisse Math. Grenzgebiete (3), vol. 4. Springer, Berlin (1984).

  6. Biquard O.: Désingularisation de métriques d’Einstein, I. Inventiones Mathematicae 192, 197–252 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. O. Biquard and Y. Rollin. Smoothing singular extremal Kähler surfaces and minimal Lagrangians. arXiv:1211.6957.

  8. Boyer C. P., Galicki K.: Sasakian Geometry. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  9. Cheeger J., Tian G.: On the cone structure at infinity of Ricci-flat manifolds with Euclidean volume growth and quadratic curvature decay. Inventiones Mathematicae 118, 493–571 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Colding T. H., Minicozzi W. P.: On uniqueness of tangent cones for Einstein manifolds. Inventiones Mathematicae 196, 515–588 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. T. C. Collins and G. Székelyhidi. K-Semistability for irregular Sasakian manifolds. Journal of Differential Geometry (to appear).

  12. M. Commichau and H. Grauert. Das formale Prinzip für kompakte komplexe Untermannigfaltigkeiten mit 1-positivem Normalenbündel. In: Annals of Mathematics Studies, vol. 100. Princeton University Press, Princeton (1981), pp. 101–126.

  13. R. J. Conlon. On the smoothability of certain Kähler cones. arXiv:1407.4887.

  14. R. J. Conlon and H.-J. Hein. Asymptotically conical Calabi–Yau manifolds, III. arXiv:1405.7140.

  15. Conlon R. J., Hein H.-J.: Asymptotically conical Calabi–Yau manifolds. I. Duke Mathematical Journal 162, 2855–2902 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. R. J. Conlon, R. Mazzeo and F. Rochon. The moduli space of asymptotically cylindrical Calabi–Yau manifolds. arXiv:1408.6562.

  17. Corti A., Haskins M., Nordström J., Pacini T.: Asymptotically cylindrical Calabi–Yau 3-folds from weak Fano 3-folds. Geometry and Topology 17, 1955–2059 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. J.-P. Demailly. Structure theorems for projective and Kähler varieties. In: Analytic and Algebraic Geometry, IAS/Park City Mathematics Series, vol. 17. American Mathematics Society, Providence (2010), pp. 295–370.

  19. Epstein C. L., Henkin G. M.: Stability of embeddings for pseudoconcave surfaces and their boundaries. Acta Mathematica 185, 161–237 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Futaki A., Ono H., Wang G.: Transverse Kähler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds. Journal of Differential Geometry 83, 585–635 (2009)

    MATH  MathSciNet  Google Scholar 

  21. Gauntlett J. P., Martelli D., Sparks J., Waldram D.: A new infinite class of Sasaki–Einstein manifolds. Advances in Theoretical and Mathematical Physics 8, 987–1000 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gauntlett J. P., Martelli D., Sparks J., Waldram D.: Sasaki Einsteinmetrics on S 2 × S 3. Advances in Theoretical and Mathematical Physics 8, 711–734 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gauntlett J. P., Martelli D., Sparks J., Yau S.-T.: Obstructions to the existence of Sasaki–Einstein metrics. Communications in Mathematical Physics 273, 803–827 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Goto R.: Calabi–Yau structures and Einstein–Sasakian structures on crepant resolutions of isolated singularities. Journal of the Mathematical Society of Japan 64, 1005–1052 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Grauert H.: Über Modifikationen und exzeptionelle analytische Mengen. Mathematische Annalen 146, 331–368 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  26. H. Grauert and R. Remmert. Theory of Stein spaces. In: Classics in Mathematics. Springer, Berlin (2004).

  27. Griffiths P. A.: The extension problem in complex analysis. II. Embeddings with positive normal bundle. American Journal of Mathematics 88, 366–446 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  28. H.-J. Hein. Complete Calabi–Yau metrics from \({\mathbb{P}^{2} \#9\bar{\mathbb{P}}^2}\). arXiv:1003.2646.

  29. Jahnke P.: Submanifolds with splitting tangent sequence. Mathematische Zeitschrift 251, 491–507 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Joyce D. D.: Compact manifolds with special holonomy. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  31. S. Kobayashi. On compact Kähler manifolds with positive definite Ricci tensor. Annals of Mathematics (2) 74 (1961), 570–574.

  32. Kobayashi S., Ochiai T.: Characterizations of complex projective spaces and hyperquadrics. Journal of Mathematics of Kyoto University 13, 31–47 (1973)

    MATH  MathSciNet  Google Scholar 

  33. Kronheimer P. B.: The construction of ALE spaces as hyper-Kähler quotients. Journal of Differential Geometry 29, 665–683 (1989)

    MATH  MathSciNet  Google Scholar 

  34. Kronheimer P. B.: A Torelli-type theorem for gravitational instantons. Journal of Differential Geometry 29, 685–697 (1989)

    MATH  MathSciNet  Google Scholar 

  35. LeBrun C.: Fano manifolds, contact structures, and quaternionic geometry. International Journal of Mathematics 6, 419–437 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lü H., Pope C. N.: of cones over Einstein–Sasaki spaces. Nuclear Physics B 782, 171–188 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. X. Ma and G. Marinescu. Holomorphic Morse inequalities and Bergman kernels. Birkhäuser Verlag, Basel (2007).

  38. Martelli D., Sparks J.: Resolutions of non-regular Ricci-flat Kähler cones. Journal of Geometry and Physics 59, 1175–1190 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Martelli D., Sparks J., Yau S.-T.: Sasaki-Einstein manifolds and volume minimisation. Communications in Mathematical Physics 280, 611–673 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. J. Milnor. Morse theory. In: Annals of Mathematics Studies, vol. 51. Princeton University Press, Princeton (1963).

  41. D. Mumford. Picard groups of moduli problems. In: Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper & Row, New York (1965), pp. 33–81.

  42. T. Oota and Y. Yasui. Explicit toric metric on resolved Calabi–Yau cone. Physics Letters B 639 (2006), 54–56.

  43. S. Pinansky. Quantum deformations from toric geometry. Journal of High Energy Physics (2006), 055, 26 pp. (electronic).

  44. R. Răsdeaconu and I. Şuvaina. ALE Ricci-flat Kähler surfaces and weighted projective spaces. arXiv:1301.4727.

  45. O. Riemenschneider. Characterizing Moišezon spaces by almost positive coherent analytic sheaves. Mathematische Zeitschrift 123 (1971), 263–284.

  46. Ross J., Thomas R.: Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics. Journal of Differential Geometry 88, 109–159 (2011)

    MATH  MathSciNet  Google Scholar 

  47. Rossi H.: Vector fields on analytic spaces. Annals of Mathematics 2(78), 455–467 (1963)

    Article  Google Scholar 

  48. B. Santoro. Existence of complete Kähler Ricci-flat metrics on crepant resolutions. Communications in Contemporary Mathematics 16 (2014), 1450003.

  49. Satake I.: On a generalization of the notion of manifold. Proceedings of the National Academy of Sciences USA 42, 359–363 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  50. I. R. Shafarevich (ed.). Algebraic geometry, V, Fano varieties. In: Encylopaedia of Mathematical Sciences, vol. 47, Springer, Berlin (1999).

  51. Spotti C.: Deformations of nodal Kähler–Einstein del Pezzo surfaces with discrete automorphism groups. Journal of the London Mathematical Society 89, 539–558 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  52. I. Şuvaina. ALE Ricci-flat Kähler metrics and deformations of quotient surface singularities. Annals of Global Analysis and Geometry 41 (2012), 109–123.

  53. Takayama S.: Simple connectedness of weak Fano varieties. Journal of Algebraic Geometry 9, 403–407 (2000)

    MATH  MathSciNet  Google Scholar 

  54. G. Tian and S.-T. Yau. Complete Kähler manifolds with zero Ricci curvature, II. Inventiones Mathematicae 106 (1991), 27–60.

  55. C. van Coevering. A construction of complete Ricci-flat Kähler manifolds. arXiv:0803.0112.

  56. C. van Coevering. Ricci-flat Kähler metrics on crepant resolutions of Kähler cones. Mathematische Annalen 347 (2010), 581–611.

  57. C. van Coevering. Examples of asymptotically conical Ricci-flat Kähler manifolds. Mathematische Zeitschrift 267 (2011), 465–496.

  58. Wright E. P.: Quotients of gravitational instantons. Annals of Global Analysis and Geometry 41, 91–108 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronan J. Conlon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conlon, R.J., Hein, HJ. Asymptotically conical Calabi–Yau metrics on quasi-projective varieties. Geom. Funct. Anal. 25, 517–552 (2015). https://doi.org/10.1007/s00039-015-0319-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-015-0319-6

Keywords

Navigation