Skip to main content

Advertisement

Log in

Physical information of 2705 PCR-based molecular markers and the evaluation of their potential use in wheat

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Genetic information of polymerase chain reaction (PCR)-based markers, one of the main tools of genetics and genomics research in wheat, have been well documented in wheat. However, the physical position in relation to these markers has not yet been systematically characterized. Aim of this study was to characterize the physical information of thousands of widely used molecular markers. We first assigned 2705 molecular markers to wheat physical map, of which 86.1% and 84.7% were the best hits to chromosome survey sequencing (CSS) project (CSS-contigs) and International Wheat Genome Sequencing Consortium Reference Sequence v1.0 (IWGSC RefSeq v1.0), respectively. Physical position of 96.2% markers were predicated based on BLAST analysis, were in accordance with that of the previous nullisomic/aneuploidy/linkage analysis. A suggestive high-density physical map with 4643 loci was constructed, spanning 14.01 Gb (82.4%) of the wheat genome, with 3.02 Mb between adjacent markers. Both forward and reverse primer sequences of 1166 markers had consistent best hits to IWGSC RefSeq v1.0 based on BLAST analysis, and the corresponding allele sizes were characterized. A detailed physical map with 1532 loci was released, spanning 13.93 Gb (81.9%) of the wheat genome, with 9.09 Mb between adjacent markers. Characteristic of recombination rates in different chromosomal regions was discussed. In addition, markers with multiple sites were aligned to homoeologous sites with a consistent order, confirming that a collinearity existed among A, B and D subgenomes. This study facilitates the integration of physical and genetical information of molecular markers, which could be of value for use in genetics and genomics research such as gene/QTL map-based cloning and marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson J. A., Stack R. W., Liu S., Waldron B. L., Fjeld A. D., Coyne C. et al. 2001 DNA markers for Fusarium head blight tolerance QTL in two wheat populations. Theor. Appl. Genet. 102, 1164–1168.

    Article  CAS  Google Scholar 

  • Choulet F., Alberti A., Theil S., Glover N., Barbe V., Daron J. et al. 2014 Structural and functional partitioning of bread wheat chromosome 3B. Science 345, 1249721.

    Article  Google Scholar 

  • Cui F., Zhao C., Ding A., Li J., Wang L., Li X. et al. 2014 Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor. Appl. Genet. 127, 659–675.

    Article  Google Scholar 

  • Cui F., Zhang, N., Fan X., Zhang W., Zhao C., Yang L. et al. 2017 Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci. Rep. 7, 3788.

    Article  Google Scholar 

  • Feldman M. and Levy A. A. 2012 Genome evolution due to allopolyploidization in wheat. Genetics 192, 3763–3774.

    Article  Google Scholar 

  • Francki M. G., Walker E., Crawford A. C., Broughton S., Ohm H. W., Barclay I. et al. 2009 Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol. Genet. Genomics 281, 181–191.

    Article  CAS  Google Scholar 

  • Gadaleta A., Giancaspro A., Giove S. L., Zacheo S., Mangini G., Simeone R. et al. 2009 Genetic and physical mapping of new EST-derived SSRs on the A and B genome chromosomes of wheat. Theor. Appl. Genet. 118, 1015–1025.

    Article  CAS  Google Scholar 

  • Gao L. F., Jing R. L., Huo N. X., Li Y., Li X. P., Zhou R. H. et al. 2004 One hundred and one new microsatellite loci derived from ESTs (EST-SSR) in bread wheat. Theor. Appl. Genet. 108, 1392–1400.

    Article  CAS  Google Scholar 

  • Gupta P. K., Mir R. R., Mohan A. and Kumar J. 2008 Wheat genomics: present status and future prospects. Int. J. Plant Genome 2008, 1–36.

    Google Scholar 

  • Gupta P. K., Langridge P. and Mir R. R. 2010 Marker-assisted wheat breeding: present status and future possibilities. Mol. Breed. 26, 145–161.

    Article  Google Scholar 

  • Harushima Y., Yano M., Shomura A., Sato M., Shimano T., Kuboki Y. et al. 1998 A high-density rice genetic linkage map with 2275 markers using a single \(\text{ F }_{{2}}\) population. Genetics 148, 479–494.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa G., Yonemaru J., Saito M. and Nakamura T. 2007 PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes. BMC Genomics 8, 135.

    Article  Google Scholar 

  • Jia J., Zhao S., Kong X., Li Y., Zhao G., He W. et al. 2013 Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496, 91–95.

    Article  CAS  Google Scholar 

  • Kota R. S., Gill K. S., Gill B. S. and Endo T. R. 1993 A cytogenetically based physical map of chromosome 1B in common wheat. Genome 36, 548–554.

    Article  CAS  Google Scholar 

  • Li S. S., Jia J. Z., Wei X. Y., Zhang X. C., Li L. Z., Chen H. M. et al. 2007 A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol. Breed. 20, 167–178.

    Article  Google Scholar 

  • Ling H. Q., Zhao S., Liu D., Wang J., Sun H., Zhang C. et al. 2013 Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496, 87–90.

    Article  CAS  Google Scholar 

  • Ling H. Q., Ma B., Shi X. L., Liu H., Dong L. L., Sun H. et al. 2018 Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557, 424–428.

    Article  CAS  Google Scholar 

  • Luo M. C., Gu Y. Q., Puiu D., Wang H., Twardziok S. O., Deal K. R. et al. 2017 Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498–502.

    Article  CAS  Google Scholar 

  • Mayer K. F. X., Rogers J., Doležel J., Pozniak C., Eversole K., Feuillet C. et al. 2014 A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345, 1251788.

    Article  Google Scholar 

  • Messmer M. M., Keller M., Zanetti S. and Keller B. 1999 Genetic linkage map of wheat \(\times \) spelt cross. Theor. Appl. Genet. 98, 1163–1170.

    Article  CAS  Google Scholar 

  • Mickelson-Young L., Endo T. R. and Gill B. S. 1995 A cytogenetic laddermap of the wheat homoeologous group-4 chromosomes. Theor. Appl. Genet. 90, 1007–1011.

    Article  CAS  Google Scholar 

  • Mullan D. J., Platteter A., Teakle N. L., Appels R., Colmer T. D., Anderson J. M. and Francki M. G. 2005 EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome 48, 811–822.

    CAS  PubMed  Google Scholar 

  • Paillard S., Schnurbusch T., Winzeler M., Messmer M., Sourdille P., Abderhalden O. et al. 2003 An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor. Appl. Genet. 107, 1235–1242.

    Article  CAS  Google Scholar 

  • Peng J. H. and Lapitan N. L. V. 2005 Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct. Integr. Genomics  5, 80–96.

    Article  CAS  Google Scholar 

  • Qi L. L., Echalier B., Chao S., Lazo G. R., Butler G. E., Anderson O. D. et al. 2004 A chromosome bin map of 16,000 EST loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168, 701–712.

    Article  CAS  Google Scholar 

  • Röder M. S., Plaschke J., König S. U., Börner A., Sorrells M. E., Tanksley S. D. et al. 1995 Abundance, variability and chromosomal location of microsatellites in wheat. Mol. Gen. Genet 246, 327–333.

    Article  Google Scholar 

  • Röder M. S, Korzun V., Wendehake K., Tixier M. H., Leroy P. and Ganal M. W. 1998 A microsatellite map of wheat. Genetics 149, 2007–2023.

    PubMed  PubMed Central  Google Scholar 

  • Somers D. J., Isaac P. and Edwards K. 2004 A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109, 1105–1114.

    Article  CAS  Google Scholar 

  • Song Q. J., Shi J. R., Singh S., Fickus E. W., Costa J. M., Lewis J. et al. 2005 Development and mapping of microsatellite (SSR) markers in wheat. Theor. Appl. Genet. 110, 550–560.

    Article  CAS  Google Scholar 

  • Sorrells M. E., Rota M. L., Bermudez-Kandianis C. E., Greene R. A., Kantety R., Munkvold J. D. et al. 2003 Comparative DNA sequence analysis of wheat and rice genomes. Genome Res. 13, 1818–1827.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sourdille P., Cadalen T., Guyomarc’h H., Snape J. W., Perretant M. R., Charmet G. et al. 2003 An update of the Courtot\(\times \)Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor. Appl. Genet. 106, 530–538.

    Article  CAS  Google Scholar 

  • Sourdille P., Singh S., Cadalen T., Gina L., Brown-Guedira G. L., Gay G. et al. 2004 Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct. Integr. Genomics 4, 12–25.

    Article  CAS  Google Scholar 

  • Torada A., Koike M., Mochida K. and Ogihara Y. 2006 SSR-based linkage map with new markers using an intraspecific population of com-mon wheat. Theor. Appl. Genet. 112, 1042–1051.

    Article  CAS  Google Scholar 

  • Varshney R. K., Langridge P. and Graner A. 2007 Application of genomics to molecular breeding of wheat and barley. Adv. Genet. 58, 121–155.

    Article  CAS  Google Scholar 

  • Xue S., Zhang Z., Lin F., Kong Z., Cao Y., Li C. et al. 2008 A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor. Appl. Genet. 117, 181–189.

    Article  CAS  Google Scholar 

  • Zhang W. Z., Chen S. S., Abate Z. D., Nirmala J. N., Rouse M., Dubcovsky J. et al. 2017 Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc. Natl. Acad. Sci. USA 114, E9483–E9492.

    Article  CAS  Google Scholar 

  • Zhao G. Y., Zou C., Li K., Wang K., Li T. B., Gao L. F. et al. 2017 The Aegilops tauschii genome reveals multiple impacts of transposons. Nat. Plants 946, 946–955.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Shandong Provincial Science Foundation for Outstanding Youth (ZR2017JL017), National Natural Science Foundation of China (31701505, 31671673, 31871612), Yantai Key Research and Development Plan (2017ZH052), Shandong Provincial Science Foundation (ZR2018PC016), the Open Project Programme (CSBAAKF2018003) of State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU, the Key Research Programme of the Chinese Academy of Sciences (KFZD-SW-110) and Shandong key research and development plan (2017NC210012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongzhen Wu or Fa Cui.

Additional information

Arun Joshi

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Sun, H., Guan, C. et al. Physical information of 2705 PCR-based molecular markers and the evaluation of their potential use in wheat. J Genet 98, 69 (2019). https://doi.org/10.1007/s12041-019-1114-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-019-1114-1

Keywords

Navigation