Skip to main content
Log in

Change-point detection in monsoon rainfall of Narmada River (central India) during 1901–2015

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Since the middle of the last century, the so-called acceleration of the water cycle, due to global warming, has led to increased rainfall variability worldwide. In this research, change point detection in the monsoon rainfall of the Narmada River basin (central India) was analysed. This analysis, based on seven rainfall stations at an annual scale during the 1901–2015 period, utilised a combination of the Bayesian approach (BA) with the discrete wavelet transform (DWT). The analysis indicates a shift towards drier conditions starting in the 1960s, with a long-term trend beginning as early as the 1920s. It was revealed that the high variability of monsoon rainfall can be attributed to the dominance of intra-annual, multi-annual, and less-than-decadal cyclical phenomena (short- and medium-term phenomena), which mask existing change points, thus creating difficulties for the BA in identifying them. Overall, the BA-DWT methods effectively detected the change and multi-change points in the studied monsoon rainfall time series, thereby outperforming the BA method when applied to the original series.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Abahous H, Ronchail J, Sifeddine A, Kenny L and Bouchaou L 2018 Trend and change point analyses of annual precipitation in the Souss-Massa Region in Morocco during 1932–2010; Theor. Appl. Climatol. 134 1153–1163.

    Article  Google Scholar 

  • Adarsh S and Janga Reddy M 2015 Trend analysis of rainfall in four meteorological subdivisions of southern India using nonparametric methods and discrete wavelet transforms; Int. J. Climol. 35(6) 1107–1124, https://doi.org/10.1002/joc.2015.35.issue-610.1002/joc.4042.

    Article  Google Scholar 

  • Bosneagu R, Lupu C E, Torica E. Lupu S, Vatu N, Tanase V M, Vasilache C, Daneci-Patrau D and Scurtu I C 2022 Long-term analysis of air temperatures variability and trends on the Romanian Black Sea Coast; Acta Geophys. 70 2179–2197.

  • Box G E and Jenkins G M 1976 Time series analysis: Forecasting and control; Holden-Day, San Francisco, 575p.

    Google Scholar 

  • Brasil Neto R M, Santos C A G, da Costa Silva J F C B, da Silva R M, dos Santos C A C and Mishra M 2021 Evaluation of the TRMM product for monitoring drought over Paraíba State northeastern Brazil: A trend analysis; Abst. Sci. Rep. 11(1), https://doi.org/10.1038/s41598-020-80026-5.

    Article  Google Scholar 

  • Chen Y, Guan Y, Shao G and Zhang D 2016 Investigating trends in streamflow and precipitation in Huangfuchuan Basin with wavelet analysis and the Mann–Kendall test; Water 8(3) 77.

    Article  Google Scholar 

  • CWC (Central Water Commission) 2017 Integrated Water Year Book June 2015–May 2016, Narmada Basin; Narmada Basin Organization, Bhopal, India, 302p.

  • Dash S K, Jenamani R K, Kalsi S R and Panda S K 2007 Some evidence of climate change in Twentieth-Century India; Clim. Change 85 299–321.

    Article  Google Scholar 

  • Daubechies I 1988 Orthonormal basis of compactly supported wavelets; Comm. Pure Appl. Math. 41 909–996.

    Article  Google Scholar 

  • Daubechies I 1992 Ten lectures on wavelets; Philadelphia, USA, Society for Industrial and Applied Mathematics, 353p.

    Book  Google Scholar 

  • Deka R L, Mahanta C, Nath K K and Dutta M K 2016 Spatio-temporal variability of rainfall regime in the Brahmaputra valley of North East India; Theor. Appl. Climatol. 124(3–4) 793–806.

    Article  Google Scholar 

  • Deshpande N R, Kothawale D R and Kulkarni A 2016 Changes in climate extremes over major river basins of India; Int. J. Climatol. 36(14) 4548–4559.

    Article  Google Scholar 

  • Dhar O N and Nandargi S 2003 Hydrometeorological aspects of floods in India; Nat. Hazards 28 1–33.

    Article  Google Scholar 

  • Do H M and Yin K L 2018 Rainfall threshold analysis and Bayesian probability method for landslide initiation based on landslides and rainfall events in the past; Open J. Geol. 8(7) 674–696.

    Article  Google Scholar 

  • Elbeltagi A, Zerouali B, Bailek N et al. 2022 Optimizing hyperparameters of deep hybrid learning for rainfall prediction: A case study of a Mediterranean basin; Arab. J. Geosci. 15 933.

    Article  Google Scholar 

  • Freire P K M M and Santos C A G 2020 Optimal level of wavelet decomposition for daily inflow forecasting; Earth Sci. Inform. 13 1163–1173.

    Article  Google Scholar 

  • Freire P K M M, Santos C A G and Silva G B L 2019 Analysis of the use of discrete wavelet transforms coupled with ANN for short-term streamflow forecasting; Appl. Soft. Comput. 80 494–505.

    Article  Google Scholar 

  • Gholami H, Moradi Y, Lotfirad M, Gandomi M A, Bazgir N and Shokrian Hajibehzad M 2022 Detection of abrupt shift and non-parametric analyses of trends in runoff time series in the Dez river basin; Water Supply 22(2) 1216–1230.

    Article  Google Scholar 

  • Goswami B B 2022 Role of the eastern equatorial Indian Ocean warming in the Indian summer monsoon rainfall trend; Clim. Dyn., https://doi.org/10.1007/s00382-022-06401-2.

    Article  Google Scholar 

  • Goyal M K 2014 Statistical analysis of long term trends of rainfall during 1901–2002 at Assam, India; Water Resour. Manag. 28 1501–1515.

    Article  Google Scholar 

  • Guhathakurta P and Rajeevan M 2008 Trends in the rainfall pattern over India; Int. J. Climatol. 28 1453–1469.

    Article  Google Scholar 

  • Guhathakurta P, Sreejith O P and Menon P A 2011 Impact of climate change on extreme rainfall events and flood risk in India; J. Earth Syst. Sci. 120(3) 359–373.

    Article  Google Scholar 

  • Guhathakurta P, Rajeevan M, Sikka D R and Tyagi A 2015 Observed changes in southwest monsoon rainfall over India during 1901–2011; Int. J. Climatol. 35 1881–1898.

    Article  Google Scholar 

  • Hatvani I G, Topál D, Ruggieri E and Kern Z 2022 Concurrent change points in Greenland ice core δ18O records and the North Atlantic oscillation over the past millennium; Atmosphere 13(1) 93.

    Article  Google Scholar 

  • Honorato A G S M, Silva G B L and Santos C A G 2018 Monthly streamflow forecasting using neuro-wavelet techniques and input analysis; Hydrol. Sci. J. 63(15–16) 2060–2075.

    Article  Google Scholar 

  • Jarušková D 1997 Some problems with application of change-point detection methods to environmental data; Environmetrics 8(5) 469–483.

    Article  Google Scholar 

  • Jenkins G M snd Watts D G 1968 Spectral analysis and its application; Holden-Day, San Francisco, 525p.

  • Joshi N, Gupta D, Suryavanshi S, Adamowski J and Madramootoo C A 2016 Analysis of trends and dominant periodicities in drought variables in India: A wavelet transform based approach; Atmos. Res. 182 200–220.

    Article  Google Scholar 

  • Karthikeyan L and Nagesh Kumar D 2013 Predictability of nonstationary time series using wavelet and EMD based ARMA models; J. Hydrol. 502 103–119.

    Article  Google Scholar 

  • Khadr M 2021 Temporal and spatial patterns of rainfall variability using nonparametric methods and wavelet transform: A case study of Sinai peninsula; Arab. J. Geosci. 14 586.

    Article  Google Scholar 

  • Kisi O and Cimen M 2012 Precipitation forecasting by using wavelet-support vector machine conjunction model; Eng. Appl. Artif. Intell. 25(4) 783–792.

    Article  Google Scholar 

  • Krishnakumar E K, Vijaykumar P, Sahai A K, Chakrapani B and Gopinath G 2019 Changing characteristics of droughts over Kerala, India: Inter-annual variability and trend; Asia-Pac. J. Atmos. Sci. 55(1) 1–17.

    Article  Google Scholar 

  • Kumar V and Jain S K 2011 Trends in rainfall amount and number of rainy days in river basins of India (1951–2004); Hydrol. Res. 42 290–306.

    Article  Google Scholar 

  • Labat D, Ababou R and Mangin A 2000 Rainfall–runoff relations for karstic springs. Part II: Continuous wavelet discrete orthogonal multi-resolution analyses; J. Hydrol. 238 149–178.

    Article  Google Scholar 

  • Labat D, Ababou R and Mangin A 2002 Analyse multi-résolution croisée de pluies et débits de sources karstiques; C. R. Géosci. 334 551–556.

    Article  Google Scholar 

  • Labat D, Ronchail J and Guyot J L 2005 Recent advances in wavelet analyses. Part 2: Amazon, Parana, Orinoco and Congo discharges time scale variability; J. Hydrol. 314(1–4) 289–311.

  • Lal M 2001 Climatic change: Implications for India’s water resources; J. Indian Water Resour. Soc. 21 101–119.

    Google Scholar 

  • Larocque M, Mangin A, Razack M and Banton O 1998 Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France); J. Hydrol. 205(3–4) 217–231.

    Article  Google Scholar 

  • Leroux A 2016 Méthode bayésienne de détection de rupture et/ou de tendance pour des données temporelles; Mémoire de Maître en statistique, Université de Montréal, 90p.

  • Lombard F 1987 Rank tests for changepoint problems; Biometrika 74(3) 615–624.

    Article  Google Scholar 

  • Ma P Y 2006 A fresh engineering approach for the forecast of financial index volatility and hedging strategies, PhD thesis, Quebec University, Montreal, Canada, 176p.

  • Mallat S G 1989 A theory for multi-resolution signal decomposition: The wavelet representation; IEEE Trans. Pattern. Anal. Mach. Intell. 11 674–693.

    Article  Google Scholar 

  • Mallya G, Mishra V, Niyogi D, Tripathi S and Govindaraju R S 2016 Trends and variability of droughts over the Indian monsoon region; Weather Clim. Extremes 12 43–68.

    Article  Google Scholar 

  • Mangin A 1984 Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale; J. Hydrol. 67(1–4) 25–43.

    Article  Google Scholar 

  • Mishra A K and Singh V P 2010 A review of drought concepts; J. Hydrol. 391(1–2) 202–216.

    Article  Google Scholar 

  • Mooley D A and Parthasarathy B 1984 Fluctuations of all India summer monsoon rainfall during 1871–1978; Clim. Change 6 287–301.

    Article  Google Scholar 

  • Nalley D, Adamowski J and Khalil B 2012 Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008); J. Hydrol. 475 204–228.

    Article  Google Scholar 

  • Nalley D, Adamowski J, Khalil B and Zielinski O B 2013 Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform; Atmos. Res. 132–133 375–398.

    Article  Google Scholar 

  • Nandargi S S and Aman K 2018 Precipitation concentration changes over India during 1951 to 2015; Sci. Res. Essays. 13(3) 14–26.

    Article  Google Scholar 

  • Nourani V, Nezamdoost N, Samadi M and Vousoughi F D 2015 Wavelet-based trend analysis of hydrological processes at different timescales; J. Water Clim. Change 6(3) 414–435.

    Article  Google Scholar 

  • Ogungbenro S B and Morakinyo T E 2014 Rainfall distribution and change detection across climatic zones in Nigeria; Weather Clim. Extremes 5 1–6.

    Google Scholar 

  • Palizdan N, Falamarzi Y, Huang Y F and Lee T S 2017 Precipitation trend analysis using discrete wavelet transform at the Langat River Basin, Selangor, Malaysia; Stoch. Env. Res. Risk. A. 31(4) 853–877.

    Article  Google Scholar 

  • Pandey B K and Khare D 2018 Identification of trend in long-term precipitation and reference evapotranspiration over Narmada river basin (India); Glob. Planet. Change 161 172–182.

    Article  Google Scholar 

  • Pandey B K, Tiwari H and Khare D 2017 Trend analysis using discrete wavelet transform (DWT) for long-term precipitation (1851–2006) over India; Hydrol. Sci. J. 62(13) 2187–2208.

    Article  Google Scholar 

  • Partal T 2017 Multi-annual analysis and trends of the temperatures and precipitations in West Anatolia; J. Water. Clim. Change 8(3) 1–18.

    Article  Google Scholar 

  • Partal T and Kucuk M 2006 Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey); Phys. Chem. Earth 31 1189–1200.

    Article  Google Scholar 

  • Parthasarathy B and Dhar O N 1975 Trend analysis of annual Indian rainfall; Hydrol. Sci. Bull. 20(2) 257–260.

    Google Scholar 

  • Parthasarathy B and Mooley D A 1978 Some features of a long homogeneous series of Indian summer monsoon rainfall; Mon. Wea. Rev. 106 771–781.

    Article  Google Scholar 

  • Parthasarathy B, Sontake N A, Mont A A and Kothawale D R 1987 Drought-flood in the summer monsoon season over different meteorological sub-divisions of India for the period 1871–1984; Int. J. Climatol. 7 57–70.

    Article  Google Scholar 

  • Pathak P, Kalra A, Ahmad S and Bernardez M 2016 Wavelet-aided analysis to estimate seasonal variability and dominant periodicities in temperature, precipitation, and streamflow in the Midwestern United States; Water Resour. Manag. 30(13) 4649–4665.

    Article  Google Scholar 

  • Paul R K and Birthal P S 2016 Investigating rainfall trend over India using the wavelet technique; J. Water Clim. Change 7(2) 353–364.

    Article  Google Scholar 

  • Pawar U and Rathnayake U 2022 Spatiotemporal rainfall variability and trend analysis over Mahaweli Basin, Sri Lanka; Arab. J. Geosci. 15 370.

    Article  Google Scholar 

  • Peña-Angulo D, Vicente-Serrano S M, Domínguez-Castro F, Murphy C, Reig F, Tramblay Y, Trigo R M, Luna M Y, Turco M, Noguera I, Aznárez-Balta M, García-Herrera R, Tomas-Burguera M and El Kenawy A 2020 Long-term precipitation in Southwestern Europe reveals no clear trend attributable to anthropogenic forcing; Abst. Environ. Res. Lett. 15(9) 094070, https://doi.org/10.1088/1748-9326/ab9c4f.

  • Pettitt A N 1979 A non-parametric approach to the change-point problem; J. R. Stat. Soc.: Ser. C (Applied Statistics) 28(2) 126–135.

    Google Scholar 

  • Pisoft P, Kalvova J and Brazdil R 2004 Cycles and trends in the Czech temperatures series using wavelet transform; Int. J. Climatol. 24 1661–1670.

    Article  Google Scholar 

  • Pour S H, Wahab A K A and Shahid S 2020 Spatiotemporal changes in aridity and the shift of drylands in Iran; Atmos. Res. 233 104704.

    Article  Google Scholar 

  • Rajeevan M, Bhate J and Jaswal A K 2008 Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data; Geophys. Res. Lett. 35 1–6.

    Google Scholar 

  • Ranade A, Singh N, Singh H N and Sontakke N A 2008 On variability of hydrological wet season, seasonal rainfall and rainwater potential of the river basins of India (1813–2006); J. Hydrol. Res. Dev. 23 79–108.

    Google Scholar 

  • Rani A, Sharma D, Babel M S and Sharma A 2022 Spatio-temporal assessment of agroclimatic indices and the monsoon pattern in the Banas River Basin, India; Environ. Challenges 7 100483.

    Article  Google Scholar 

  • Rashid M M, Beecham S and Chowdhury R K 2015 Assessment of trends in point rainfall using continuous wavelet transforms; Adv. Water Resour. 82 1–15.

    Article  Google Scholar 

  • Reeves J, Chen J, Wang X L, Lund R and Lu Q Q 2007 A review and comparison of changepoint detection techniques for climate data; J. Appl. Meteorol. Climatol. 46(6) 900–915.

    Article  Google Scholar 

  • Roushangar K, Alizadeh F and Adamowski J F 2018 Exploring the effects of climatic variables on monthly precipitation variation using continuous wavelet-based multiscale entropy approach; Environ. Res. 165 176–192.

    Article  Google Scholar 

  • Ruggieri E 2012 A Bayesian approach to detecting change points in climatic records; Int. J. Climatol. 33(2) 520–528.

    Article  Google Scholar 

  • Ruggieri E A 2013 Bayesian approach to detecting change points in climatic records; Int. J. Climatol. 33(2) 520–528, https://doi.org/10.1002/joc.344.

    Article  Google Scholar 

  • Ruggieri E and Antonellis M 2016 An exact approach to Bayesian sequential change point detection; Comput. Stat. Data. An. 97 71–86.

    Article  Google Scholar 

  • Sakthivadivel R 2007 The groundwater recharge movement in India; In: The Agricultural Groundwater Revolution: Opportunities and threats to development (eds) Giordano M and Villholth K G,  CAB International, Wallingford, pp. 195–210.

    Chapter  Google Scholar 

  • Sang Y F, Sun F, Singh V P, Xie P and Sun J 2018 A discrete wavelet spectrum approach for identifying non-monotonic trends in hydroclimate data; Nat. Hazards Earth Syst. Sci. 22(1) 757–766.

    Article  Google Scholar 

  • Santos C A G and Morais B S 2013 Identification of precipitation zones within São Francisco River basin (Brazil) by global wavelet power spectra; Hydrol. Sci. J. 58(4) 789–796.

    Article  Google Scholar 

  • Santos C A G, Silva R M and Akrami S A 2016 Rainfall analysis in Klang River basin using continuous wavelet transform; J. Urban Environ. Eng. 10(1) 3–10.

    Article  Google Scholar 

  • Santos C A G, Kisi Ö, Silva R M and Zounemat-Kermani M 2018 Wavelet-based variability on streamflow at 40-year timescale in the Black Sea region of Turkey; Arab. J. Geosci. 11 169.

    Article  Google Scholar 

  • Santos C A G, Freire P K M M, Silva R M and Akrami S A 2019 Hybrid wavelet neural network approach for daily inflow forecasting using tropical rainfall measuring mission data; J. Hydrol. Eng. 24(2) 04018062.

    Article  Google Scholar 

  • Saraiva S V, Carvalho F O, Santos C A G, Barreto L C and Freire P K M M 2021 Daily streamflow forecasting in Sobradinho Reservoir using machine learning models coupled with wavelet transform and bootstrapping; Appl. Soft Comput. 102 107081.

    Article  Google Scholar 

  • Sezen C and Partal T 2020 Wavelet combined innovative trend analysis for precipitation data in the Euphrates-Tigris basin, Turkey; Hydrol. Sci. J. 65(11) 1909–1927.

    Article  Google Scholar 

  • Singh N, Sontakke N A, Singh H N and Pandey A K 2005 Recent trend in spatiotemporal variation of rainfall over India – an investigation into basin-scale rainfall fluctuations; IAHS Publ. No. 296 273–282.

    Google Scholar 

  • Sinha Ray K C and De U S 2003 Climate change in India as evidenced from instrumental records; WMO Bull. 52 53–58.

  • Sirisena J, Augustijn D, Nazeer A and Bamunawala J 2022 Use of Remote-Sensing-Based Global Products for Agricultural Drought Assessment in the Narmada Basin, India; Sustainability 14(20) 13050.

    Article  Google Scholar 

  • Subash N, Sikka A K and Mohan H S R 2011 An investigation into observational characteristics of rainfall and temperature in Central Northeast India – a historical perspective 1889–2008; Theor. Appl. Climatol. 103 305–319.

    Article  Google Scholar 

  • Swain S, Mishra S K and Pandey A 2021 A detailed assessment of meteorological drought characteristics using simplified rainfall index over Narmada River Basin, India; Environ. Earth. Sci. 80 221.

    Article  Google Scholar 

  • Swain S, Mishra S K, Pandey A and Kalura P 2022 Inclusion of groundwater and socio-economic factors for assessing comprehensive drought vulnerability over Narmada River Basin, India: A geospatial approach; Appl. Water Sci. 12(2) 1–16.

    Article  Google Scholar 

  • Thomas T, Gunthe S S, Ghosh N C and Sudheer K P 2015 Analysis of monsoon rainfall variability over Narmada basin in central India: Implication of climate change; J. Water Clim. Change 6(3) 615–627.

    Article  Google Scholar 

  • Tsolis G and Xenos T D 2011 Signal denoising using empirical mode decomposition and higher order statistics; International Journal of Signal Processing, Image Processing and Pattern Recognition 4(2) 91–106.

    Google Scholar 

  • Verdier G 2007 Détection Statistique de Rupture de Modèle dans les Systèmes Dynamiques – Application à la Supervision de Procédés de Dépollution Biologique. Mathématiques [math]. Université Montpellier II – Sciences et Techniques du Languedoc, 247p, https://theses.hal.science/tel-00221418/document.

  • Yadav R K, Kumar K R and Rajeevan M 2012 Characteristic features of winter precipitation and its variability over northwest India; J. Earth Syst. Sci. 121(3) 611–623.

    Article  Google Scholar 

  • Yu M and Ruggieri E 2019 Change point analysis of global temperature records; Int. J. Climatol. 39(8) 3679–3688, https://doi.org/10.1002/joc.6042.

    Article  Google Scholar 

  • Zerouali B, Chettih M, Abda Z, Mesbah M and Djemai M 2020 The use of hybrid methods for change points and trends detection in rainfall series of northern Algeria; Acta Geophys. 68 1443–1460.

  • Zerouali B, Al-Ansari N, Chettih M, Mohamed M, Abda Z, Santos C A G, Zerouali B and Elbeltagi A 2021 An enhanced innovative triangular trend analysis of rainfall based on a spectral approach; Water 13(5) 727.

    Article  Google Scholar 

  • Zerouali B, Chettih M, Abda Z, Mohamed M, Santos C A G and Neto R M B 2022a A new regionalization of rainfall patterns based on wavelet transform information and hierarchical cluster analysis in northeastern Algeria; Theor. Appl. Climatol. 147 1489–1510.

    Article  Google Scholar 

  • Zerouali B, Elbeltagi A, Al-Ansari N, Abda Z, Santos C A G, Boukhari S and Araibia A S 2022b Improving the visualization of rainfall trends using various innovative trend methodologies with time–frequency-based methods; Appl. Water. Sci. 12 207.

    Article  Google Scholar 

Download references

Acknowledgements

The first author expresses profound gratitude to the Directorate General for Scientific Research and Technological Development of Algeria. Appreciation is also extended to the India Meteorological Department (IMD) for the provided data. The sixth author's contribution was partly funded by the National Council for Scientific and Technological Development, Brazil (313358/2021-4).

Author information

Authors and Affiliations

Authors

Contributions

BZ, UVP and MC conceived the framework of this research, processed data, designed the experiments, plots, map preparation, validated the processing results, and wrote the manuscript. ZA, CAGS, and DF gave feedback on the written manuscript, helped in analyses and editing the manuscript and added technical improvements. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bilel Zerouali.

Additional information

Communicated by C T Dhanya

Supplementary materials pertaining to this article are available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1904 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zerouali, B., Pawar, U.V., Elbeltagi, A. et al. Change-point detection in monsoon rainfall of Narmada River (central India) during 1901–2015. J Earth Syst Sci 132, 133 (2023). https://doi.org/10.1007/s12040-023-02140-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02140-y

Keywords

Navigation