Skip to main content
Log in

Precipitation trend analysis using discrete wavelet transform at the Langat River Basin, Selangor, Malaysia

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The main purpose of this study was to determine the most dominant periodic components that affect the annual and seasonal precipitation trends in each homogenous rainfall region in the Langat River Basin, Malaysia for the period 1982–2011. Performing this research could be essential because in the previous studies on detection of trend in Malaysia, the details of variations of different time scales and the periodic responsible for the observed trends were not investigated. Using discrete wavelet transform (DWT) coupled with Mann–Kendall at the regional scale for the first time particularly in the context of Malaysia is the contribution of this study. In order to form the homogenous rainfall regions, first the total annual and seasonal precipitation in each year was spatialized into 5 km × 5 km grids using the inverse distance weighting method. The obtained precipitation series for the grids were then grouped applying the Ward’s clustering method based on the similarity of precipitation time series. After allocating a cluster number to each grid, the boundary of the regions was formed in ArcGIS software. Following which, in each homogenous region the areal precipitation series were computed by the Thiessen polygon method. The Mann–Kendall (MK) test was used to detect trend and the DWT coupled with the MK test and the sequential MK analysis were then utilized in order to find out the time scale which affected the observed trend in each homogenous region. On annual scale, it was found that D1 (plus approximation) component in regions Annual Cluster1 (AC1) and AC2 was the periodic mode responsible for trends. On seasonal scale, in regions Northeast monsoon Cluster 1 (NC1), NC3, SC1 and Southwest monsoon Cluster 2 (SC2), D1 (with approximation), in regions NC4, Inter monsoon 1 Cluster 1 (I1C1), I1C2, Inter monsoon 2 Cluster 1 I2C1 and I2C2, Detail 2 (D2) (plus approximation) and in region NC2, Detail 3 (D3) (with approximation added) component were the most influential periodicity for trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adamowski K, Bocci C (2001) Geostatistical regional trend detection in river flow data. Hydrol Process 15:3331–3341. doi:10.1002/hyp.1045

    Article  Google Scholar 

  • Adamowski K, Bougadis J (2003) Detection of trends in annual extreme rainfall. Hydrol Process 17:3547–3560. doi:10.1002/hyp.1353

    Article  Google Scholar 

  • Aggarwal CC (2015) Data mining. Springer, New York

    Book  Google Scholar 

  • Ahani H, Kherad M, Kousari MR et al (2012) An investigation of trends in precipitation volume for the last three decades in different regions of Fars province, Iran. Theor Appl Climatol 109:361–382. doi:10.1007/s00704-011-0572-z

    Article  Google Scholar 

  • Bari Abarghouei H, Asadi Zarch MA, Dastorani MT et al (2011) The survey of climatic drought trend in Iran. Stoch Environ Res Risk Assess 25:851–863. doi:10.1007/s00477-011-0491-7

    Article  Google Scholar 

  • Basistha A, Arya D, Goel N (2009) Analysis of historical changes in rainfall in the Indian Himalayas. Int J Climatol 29:555–572. doi:10.1002/joc.1706

    Article  Google Scholar 

  • Becker S, Gemmer M, Jiang T (2006) Spatiotemporal analysis of precipitation trends in the Yangtze River catchment. Stoch Environ Res Risk Assess 20:435–444. doi:10.1007/s00477-006-0036-7

    Article  Google Scholar 

  • Birsan MV, Molnar P, Burlando P, Pfaundler M (2005) Streamflow trends in Switzerland. J Hydrol 314:312–329. doi:10.1016/j.jhydrol.2005.06.008

    Article  Google Scholar 

  • Bonaccorso B, Cancelliere A, Rossi G et al (2005) Detecting trends of extreme rainfall series in Sicily. Adv Geosci 2:7–11

    Article  Google Scholar 

  • Burn DH, Hag Elnur MA (2002) Detection of hydrologic trends and variability. J Hydrol 255:107–122

    Article  Google Scholar 

  • Burn DH, Sharif M, Zhang K (2010) Detection of trends in hydrological extremes for Canadian watersheds. Hydrol Process 24:1781–1790. doi:10.1002/hyp.7625

    Article  Google Scholar 

  • Caloiero T, Coscarelli R, Ferrari E, Mancini M (2011) Trend detection of annual and seasonal rainfall in Calabria (Southern Italy). Int J Climatol 31:44–56. doi:10.1002/joc.2055

    Article  Google Scholar 

  • Cannarozzo M, Noto LV, Viola F (2006) Spatial distribution of rainfall trends in Sicily (1921–2000). Phys Chem Earth Parts A/B/C 31:1201–1211. doi:10.1016/j.pce.2006.03.022

    Article  Google Scholar 

  • Chau KW, Wu CL (2010) A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. J Hydroinformat 12:458. doi:10.2166/hydro.2010.032

    Article  Google Scholar 

  • Cheung WH, Senay GB, Singh A (2008) Trends and spatial distribution of annual and seasonal rainfall in Ethiopia. Int J Climatol 28:1723–1734

    Article  Google Scholar 

  • Chou C (2007) Applying multi-resolution analysis to differential hydrological grey models with dual series. J Hydrol 332:174–186. doi:10.1016/j.jhydrol.2006.06.031

    Article  Google Scholar 

  • Chouakria AD, Nagabhushan PN (2007) Adaptive dissimilarity index for measuring time series proximity. Adv Data Anal Classif 1:5–21. doi:10.1007/s11634-006-0004-6

    Article  Google Scholar 

  • Cunderlik J, Burn D (2004) Linkages between regional trends in monthly maximum flows and selected climatic variables. J Hydrol Eng 9:246–256

    Article  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • de Artigas MZ, Elias AG, de Campra PF (2006) Discrete wavelet analysis to assess long-term trends in geomagnetic activity. Phys Chem Earth Parts A/B/C 31:77–80. doi:10.1016/j.pce.2005.03.009

    Article  Google Scholar 

  • de Lima MIP, Carvalho SCP, de Lima JLMP (2010) Investigating annual and monthly trends in precipitation structure: an overview across Portugal. Nat Hazards Earth Syst Sci 10:2429–2440. doi:10.5194/nhess-10-2429-2010

    Article  Google Scholar 

  • Department of Irrigation and Drainage Malaysia (2012) Hydrological data: rainfall records for West Malaysia 1970–2012 [Data file]. Water Resources Management and Hydrology Division

  • Déry SJ, Wood EF (2005) Decreasing river discharge in northern Canada. Geophys Res Lett 32:L10401

    Article  Google Scholar 

  • Douglas E, Vogel R, Kroll C (2000) Trends in floods and low flows in the United States: impact of spatial correlation. J Hydrol 240:90–105

    Article  Google Scholar 

  • Estrada F, Martínez-Arroyo A, Fernández-Eguiarte A et al (2009) Defining climate zones in México City using multivariate analysis. Atmósfera 22:175–193

    Google Scholar 

  • Everitt BS, Landau S, Leese M (2001) Cluster analysis. Wiley, Chichester

    Google Scholar 

  • Faulon JL, Bender A (2010) Handbook of Chemoinformatics algorithms, illustrate. CRC Press, Boca Raton

    Book  Google Scholar 

  • Fovell RG, Fovell MYC (1993) Climate zones of the conterminous United States defined using cluster analysis. J Clim 6:2103–2135. doi:10.1175/1520-0442(1993)006<2103:CZOTCU>2.0.CO;2

    Article  Google Scholar 

  • Gabor D (1946) Theory of communication. Part 1: the analysis of information. Electr Eng Part III Radio Commun Eng J Inst 93:429–441. doi:10.1049/ji-3-2.1946.0074

    Google Scholar 

  • Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell Inf Syst 17:107–145

    Article  Google Scholar 

  • Hamed KH (2008) Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. J Hydrol 349:350–363

    Article  Google Scholar 

  • Hamed K, Rao AR (1998) A modified Mann–Kendall trend test for autocorrelated data. J Hydrol 204:182–196. doi:10.1016/S0022-1694(97)00125-X

    Article  Google Scholar 

  • Helsel DR, Hirsch RM (1992) Statistical methods in water resources. Elsevier, Amsterdam

    Google Scholar 

  • Hirsch RM, Slack JR (1984) A nonparametric trend test for seasonal data with serial dependence. Water Resour Res 20:727–732. doi:10.1029/WR020i006p00727

    Article  Google Scholar 

  • Iván G, Szabadka Z, Grolmusz V (2010) A hybrid clustering of protein binding sites. FEBS J 277:1494–1502. doi:10.1111/j.1742-4658.2010.07578.x

    Article  Google Scholar 

  • Iyigun C, Türkeş M, Batmaz İ et al (2013) Clustering current climate regions of Turkey by using a multivariate statistical method. Theor Appl Climatol 114:95–106. doi:10.1007/s00704-012-0823-7

    Article  Google Scholar 

  • Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice Hall PTR, Upper Saddle

    Google Scholar 

  • Jardine N, Sibson R (1971) Mathematical Taxonomy. Wiley, New York

    Google Scholar 

  • Kallache M, Rust HW, Kropp J (2005) Trend assessment: applications for hydrology and climate research. Nonlinear Process Geophys 12:201–210

    Article  Google Scholar 

  • Karpouzos D, Kavalieratou S, Babajimopoulos C (2010) Trend analysis of precipitation data in Pieria Region (Greece). Eur Water 30:31–40

    Google Scholar 

  • Kebaili Bargaoui Z, Chebbi A (2009) Comparison of two kriging interpolation methods applied to spatiotemporal rainfall. J Hydrol 365:56–73. doi:10.1016/j.jhydrol.2008.11.025

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Charles Griffin, London

    Google Scholar 

  • Khalili K, Tahoudi MN, Mirabbasi R, Ahmadi F (2015) Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stoch Environ Res Risk Assess. doi:10.1007/s00477-015-1095-4

    Google Scholar 

  • Kim S (2004) Wavelet analysis of precipitation variability in northern California, USA. KSCE J Civ Eng 8:471–477. doi:10.1007/BF02829169

    Article  Google Scholar 

  • Kisi O, Cimen M (2011) A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J Hydrol 399:132–140. doi:10.1016/j.jhydrol.2010.12.041

    Article  Google Scholar 

  • Lee DTL, Yamamoto A (1994) Wavelet analysis: theory and applications. Hewlett Packard J 45:44

    Google Scholar 

  • Lloyd CD (2005) Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J Hydrol 308:128–150. doi:10.1016/j.jhydrol.2004.10.026

    Article  Google Scholar 

  • López-Moreno JI, Vicente-Serrano SM, Angulo-Martínez M et al (2009) Trends in daily precipitation on the northeastern Iberian Peninsula, 1955–2006. Int J Climatol 1041:1026–1041. doi:10.1002/joc.1945

    Google Scholar 

  • Lu GY, Wong DW (2008) An adaptive inverse-distance weighting spatial interpolation technique. Comput Geosci 34:1044–1055

    Article  Google Scholar 

  • Malaysia Meteorological Department (2012) Rainfall records for Selangor State Malaysia 1970–2012 [Data file]. Record unit

  • Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. Pattern Anal Mach Intell IEEE Trans 11:674–693

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econom J Econom Soc 13:245–259

    Google Scholar 

  • Miao L, Jun X, Dejuan M (2012) Long-term trend analysis of seasonal precipitation for Beijing, China. J Resour Ecol 3:64–72. doi:10.5814/j.issn.1674-764x.2012.01.010

    Article  Google Scholar 

  • Miller WP, Piechota TC (2008) Regional analysis of trend and step changes observed in hydroclimatic variables around the Colorado River Basin. J Hydrometeorol 9:1020–1034. doi:10.1175/2008JHM988.1

    Article  Google Scholar 

  • Misiti M, Misiti Y (1996) Wavelet toolbox. The MathWorks Inc, Natick

    Google Scholar 

  • Modarres R, da Silva VDPR (2007) Rainfall trends in arid and semi-arid regions of Iran. J Arid Environ 70:344–355. doi:10.1016/j.jaridenv.2006.12.024

    Article  Google Scholar 

  • Mohsin T, Gough WA (2009) Trend analysis of long-term temperature time series in the Greater Toronto Area (GTA). Theor Appl Climatol 101:311–327. doi:10.1007/s00704-009-0214-x

    Article  Google Scholar 

  • Nalley D, Adamowski J, Khalil B (2012) Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008). J Hydrol 475:204–228. doi:10.1016/j.jhydrol.2012.09.049

    Article  Google Scholar 

  • Niu J (2013) Precipitation in the Pearl River basin, South China: scaling, regional patterns, and influence of large-scale climate anomalies. Stoch Environ Res Risk Assess 27:1253–1268. doi:10.1007/s00477-012-0661-2

    Article  Google Scholar 

  • Nolin AW, Hall-McKim EA (2006) Frequency modes of monsoon precipitation in Arizona and New Mexico. Mon Weather Rev 134:3774–3781. doi:10.1175/MWR3244.1

    Article  Google Scholar 

  • Novotny EV, Stefan HG (2007) Stream flow in Minnesota: indicator of climate change. J Hydrol 334:319–333. doi:10.1016/j.jhydrol.2006.10.011

    Article  Google Scholar 

  • Oguntunde PG, Abiodun BJ, Lischeid G (2011) Rainfall trends in Nigeria, 1901–2000. J Hydrol 411:207–218. doi:10.1016/j.jhydrol.2011.09.037

    Article  Google Scholar 

  • Palizdan N, Falamarzi Y, Huang YF et al (2013) Regional precipitation trend analysis at the Langat River Basin, Selangor, Malaysia. Theor Appl Climatol 117:589–606. doi:10.1007/s00704-013-1026-6

    Article  Google Scholar 

  • Partal T (2010) Wavelet transform-based analysis of periodicities and trends of Sakarya basin (Turkey) streamflow data. River Res Appl 26:695–711

    Google Scholar 

  • Partal T, Kahya E (2006) Trend analysis in Turkish precipitation data. Hydrol Process 20:2011–2026. doi:10.1002/hyp.5993

    Article  Google Scholar 

  • Partal T, Küçük M (2006) Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey). Phys Chem Earth Parts A/B/C 31:1189–1200. doi:10.1016/j.pce.2006.04.043

    Article  Google Scholar 

  • Percival DB (2008) Analysis of geophysical time series using discrete wavelet transforms: an overview. In: Donner RV, Barbosa SM (eds) Nonlinear time series analysis in the geosciences, illustrate. Springer, Berlin, pp 61–79

    Chapter  Google Scholar 

  • Santos C, Galvão C (2001) Matsuyama city rainfall data analysis using wavelet transform. Ann J Hydraul Engng 45:211–216. doi:10.2208/prohe.45.211

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Serrano A, Mateos VL, Garcia JA (1999) Trend analysis of monthly precipitation over the iberian peninsula for the period 1921–1995. Phys Chem Earth Part B Hydrol Ocean Atmos 24:85–90

    Article  Google Scholar 

  • Sneyers R (1990) On the statistical analysis of series of observations. Secretariat of the World Meteorological Organization, Geneva

    Google Scholar 

  • Suhaila J, Deni S, Zin W, Jemain A (2010) Trends in peninsular Malaysia rainfall data during the Southwest Monsoon and Northeast Monsoon Seasons: 1975–2004. Sains Malays 39:533–542

    Google Scholar 

  • Tabari H, Talaee PH (2011) Temporal variability of precipitation over Iran: 1966–2005. J Hydrol 396:313–320. doi:10.1016/j.jhydrol.2010.11.034

    Article  Google Scholar 

  • Tabari H, Taye MT, Willems P (2015a) Statistical assessment of precipitation trends in the upper Blue Nile River basin. Stoch Environ Res Risk Assess. doi:10.1007/s00477-015-1046-0

    Google Scholar 

  • Tabari H, Taye MT, Willems P (2015b) Statistical assessment of precipitation trends in the upper Blue Nile River basin. Stoch Environ Res Risk Assess. doi:10.1007/s00477-015-1046-0

    Google Scholar 

  • Tangang FT, Juneng L, Ahmad S (2006) Trend and interannual variability of temperature in Malaysia: 1961–2002. Theor Appl Climatol 89:127–141. doi:10.1007/s00704-006-0263-3

    Article  Google Scholar 

  • Torrence C, Compo G (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Unal Y, Kindap T, Karaca M (2003) Redefining the climate zones of Turkey using cluster analysis. Int J Climatol 23:1045–1055. doi:10.1002/joc.910

    Article  Google Scholar 

  • Wang W, Chau K, Qiu L, Chen Y (2015) Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. Environ Res 139:46–54. doi:10.1016/j.envres.2015.02.002

    Article  CAS  Google Scholar 

  • Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • Wong CL, Venneker R, Uhlenbrook S et al (2009) Variability of rainfall in Peninsular Malaysia. Hydrol Earth Syst Sci Discuss 6:5471–5503

    Article  Google Scholar 

  • Wu CL, Chau KW, Li YS (2009) Methods to improve neural network performance in daily flows prediction. J Hydrol 372:80–93. doi:10.1016/j.jhydrol.2009.03.038

    Article  Google Scholar 

  • Xu R, Wunsch D (2009) Clustering. Wiley, Hoboken

    Google Scholar 

  • Xu J, Chen Y, Li W et al (2010) An integrated statistical approach to identify the nonlinear trend of runoff in the Hotan River and its relation with climatic factors. Stoch Environ Res Risk Assess 25:223–233. doi:10.1007/s00477-010-0433-9

    Article  Google Scholar 

  • Xu J, Chen Y, Li W et al (2013) The nonlinear hydro-climatic process in the Yarkand River, northwestern China. Stoch Environ Res Risk Assess 27:389–399. doi:10.1007/s00477-012-0606-9

    Article  Google Scholar 

  • Yang T, Xu CY, Shao QX et al (2010) Temporal and spatial patterns of low-flow changes in the Yellow River in the last half century. Stoch Environ Res Risk Assess 24:297–309. doi:10.1007/s00477-009-0318-y

    Article  Google Scholar 

  • Yue S, Hashino M (2003) Long term trends of annual and monthly precipitation in Japan1. JAWRA J Am Water Resour Assoc 39:587–596

    Article  Google Scholar 

  • Yue S, Pilon P (2004) A comparison of the power of the t test, Mann–Kendall and bootstrap tests for trend detection. Hydrol Sci J 49:21–37

    Article  Google Scholar 

  • Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16:1807–1829. doi:10.1002/hyp.1095

    Article  Google Scholar 

  • Yue S, Pilon P, Phinney B (2003) Canadian streamflow trend detection: impacts of serial and cross-correlation. Hydrol Sci J 48:51–63. doi:10.1623/hysj.48.1.51.43478

    Article  Google Scholar 

  • Zhang X, Harvey KD, Hogg WD, Yuzyk TR (2001) Trends in Canadian streamflow. Water Resour Res 37:987–998

    Article  Google Scholar 

  • Zoubi MDBA, Rawi MA (2008) An efficient approach for computing silhouette coefficients. J Comput Sci 4:252

    Article  Google Scholar 

  • Zume JT, Tarhule A (2006) Precipitation and streamflow variability in northwestern Oklahoma, 1894–2003. Phys Geogr 27:189–205

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to sincerely thank the Ministry of Science, Technology and Innovation (MOSTI) for the financial support given for the research project entitled “Modeling Water Resources and Storm Water Management Strategies for Large Scale Dual-Function Rainwater Tanks Incorporating Climate Change and Urbanization Scenarios”. The authors would also like to express their appreciations to the Hydrology Division, Department of Irrigation and Drainage (DID) at Ampang, Selangor and the Malaysian Meteorology Department (MMD) at Petaling Jaya, both under the Ministry of Natural Resources and Environment (NRE) for the provision of the climatic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narges Palizdan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palizdan, N., Falamarzi, Y., Huang, Y.F. et al. Precipitation trend analysis using discrete wavelet transform at the Langat River Basin, Selangor, Malaysia. Stoch Environ Res Risk Assess 31, 853–877 (2017). https://doi.org/10.1007/s00477-016-1261-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1261-3

Keywords

Navigation