Skip to main content
Log in

Optimizing hyperparameters of deep hybrid learning for rainfall prediction: a case study of a Mediterranean basin

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Predicting rainfall amount is essential in water resources planning and for managing structures, especially those against floods and long-term drought establishment. Machine learning techniques can produce good results using a minimum dataset requirement, making it a leader among the prediction algorithms. This work develops a hybrid learning model for monthly rainfall prediction at four geographical locations representing Mediterranean basins in Northern Algeria and desert areas in Egypt. The study proposes an adaptive dynamic-based hyperparameter optimization algorithm to improve the accuracy of hybrid deep learning models. The proposed model provided a good fit, based on the obtained Nash-Sutcliffe efficiency index (NSE ≈ 0.90) with a high correlation coefficient of R ≈ 0.96, providing improvements of up to 62% in the RMSE. The proposed method proved to be an encouraging and promising tool to simulate water cycle components for better water resources management and protection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are owned by the Algerian Meteorological Office (ONM) of Algeria.

References

  • Abda Z, Zerouali B, Alqurashi M, Chettih M, Santos CAG, Hussein EE (2021) Suspended sediment load simulation during flood events using intelligent systems: a case study on semiarid regions of Mediterranean Basin. Water 13(24):3539

    Article  Google Scholar 

  • Adisa OM, Botai JO, Adeola AM, Hassen A, Botai CM, Darkey D et al (2019) Application of artificial neural network for predicting maize production in South Africa. Sustain 11:1–17. https://doi.org/10.3390/su11041145

    Article  Google Scholar 

  • Aiyelokun O, Ojelabi A, Agbede O (2020) Performance evaluation of machine learning models in predicting dry and wet climatic phases. Soft Comput Civ Eng 4:29–48

    Google Scholar 

  • Aldrian E, Dwi Susanto R (2003) Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int J Climatol 2003(23):1435–1452. https://doi.org/10.1002/joc.950

    Article  Google Scholar 

  • Almorox J, Voyant C, Bailek N, Kuriqi A, Arnaldo JA (2021) Total solar irradiance’s effect on the performance of empirical models for estimating global solar radiation: an empirical-based review. Energy 236:121486. https://doi.org/10.1016/j.energy.2021.121486

    Article  Google Scholar 

  • Aoun N, Bouchouicha K, Bailek N (2019) Seasonal performance comparison of four electrical models of monocrystalline PV module operating in a harsh environment. IEEE Journal of Photovoltaics 9(4). https://doi.org/10.1109/JPHOTOV.2019.2917272

  • Azad A, Manoochehri M, Kashi H, Farzin S, Karami H, Nourani V et al (2019) Comparative evaluation of intelligent algorithms to improve adaptive neuro-fuzzy inference system performance in precipitation modelling. J Hydrol 571:214–224. https://doi.org/10.1016/j.jhydrol.2019.01.062

    Article  Google Scholar 

  • Bailek N, Bouchouicha K, Hassan MA, Slimani A, Jamil B (2020) Implicit regression-based correlations to predict the back temperature of PV modules in the arid region of south Algeria. Renewable Energy 156:57–67. https://doi.org/10.1016/j.renene.2020.04.073

    Article  Google Scholar 

  • Band SS, Janizadeh S, Chandra PS, Saha A, Chakrabortty R, Shokri M et al (2020) Novel ensemble approach of deep learning neural network (DLNN) model and particle swarm optimization (PSO) algorithm for prediction of gully erosion susceptibility. Sensors 20:5609

    Article  Google Scholar 

  • Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data. 5:180214

    Article  Google Scholar 

  • Bouchouicha K, Bailek N, Bellaoui M, Oulimar B. (2020) Estimation of solar power output using ANN model: a case study of a 20-MW Solar PV Plan at Adrar, Algeria BT - Smart Energy Empowerment in Smart and Resilient Cities. In: Hatti M, editor., Cham: Springer International Publishing;, p. 195–203.

  • Bouchouicha K, Bailek N, Bellaoui M, Oulimar B, Benatiallah D (2021) ANN-based correction model of radiation and temperature for solar energy application in South of Algeria. Lecture Notes in Networks and Systems 174. https://doi.org/10.1007/978-3-030-63846-7_55

  • Bouchouicha K, Razagui A, Bachari NI, Aoun N (2015) Mapping and geospatial analysis of solar resource in Algeria. Intl J Energy Environ Econ 23(6):735–751

    Google Scholar 

  • Chargui S, Zarrour R, El Mouaddeb R et al (2022) Recent trends and variability of extreme rainfall indices over Lebna basin and neighborhood in the last 40 years. Arab J Geosci 15:203. https://doi.org/10.1007/s12517-021-09334-y

    Article  Google Scholar 

  • Chhetri M, Kumar S, Pratim RP, Kim B-G (2020) Deep BLSTM-GRU Model for Monthly Rainfall Prediction: A Case study of Simtokha Bhutan. Remote Sens 12:3174. https://doi.org/10.3390/rs12193174

    Article  Google Scholar 

  • Derdous O, Bouamrane A, Mrad D (2021) Spatiotemporal analysis of meteorological drought in a Mediterranean dry land: case of the Cheliff basin–Algeria. Model. Earth Syst. Environ. 7:135–143. https://doi.org/10.1007/s40808-020-00951-2

    Article  Google Scholar 

  • do Nascimento TVM, Santos CAG, de Farias CAS, da Silva RM (2022) Monthly streamflow modeling based on self-organizing maps and satellite-estimated rainfall data. Water Resour Manag. https://doi.org/10.1007/s11269-022-03147-8

  • El Alaoui El Fels A, Saidi MEM, Bouiji A, Benrhanem M (2021) Rainfall regionalization and variability of extreme precipitation using artificial neural networks: a case study from western central Morocco. J. Water Clim. Change 12(4):1107–1122. https://doi.org/10.2166/wcc.2020.217

    Article  Google Scholar 

  • Elbeltagi A, Zhang L, Deng J, Juma A, Wang K (2020) Modeling monthly crop coefficients of maize based on limited meteorological data : a case study in Nile Delta. Egypt. Comput Electron Agric 173:105368. https://doi.org/10.1016/j.compag.2020.105368

    Article  Google Scholar 

  • Elbeltagi A, Aslam MR, Malik A, Mehdinejadiani B, Srivastava A, Bhatia AS, Deng J (2020a) The impact of climate changes on the water footprint of wheat and maize production in the Nile Delta. Egypt. Sci. Total Environ. 743:140770. https://doi.org/10.1016/j.scitotenv.2020.140770

    Article  Google Scholar 

  • Elbeltagi A, Deng J, Wang K, Hong Y (2020b) Crop Water footprint estimation and modeling using an artificial neural network approach in the Nile Delta. Egypt. Agric. Water Manag. 235:106080. https://doi.org/10.1016/j.agwat.2020.106080

    Article  Google Scholar 

  • Elbeltagi A, Deng J, Wang K, Malik A, Maroufpoor S (2020c) Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment. Agric. Water Manag. 241:106334. https://doi.org/10.1016/j.agwat.2020.106334

    Article  Google Scholar 

  • El-kenawy E-SM, Ibrahim A, Bailek N, Bouchouicha K, Hassan MA, Jamei M et al (2021) Sunshine duration measurements and predictions in Saharan Algeria region: an improved ensemble learning approach. Theor Appl Climatol. https://doi.org/10.1007/s00704-021-03843-2

  • El-Tantawi AM, Anming B, Liu Y et al (2021) An assessment of rainfall variability in northern Egypt. Arab J Geosci 14:1203. https://doi.org/10.1007/s12517-021-07272-3

    Article  Google Scholar 

  • Feng Q, Wen X, Li J (2015) Wavelet analysis-support vector machine coupled models for monthly rainfall forecasting in arid regions. Water Resour Manage 29:1049–1065. https://doi.org/10.1007/s11269-014-0860-3

    Article  Google Scholar 

  • Feng P, Wang BL, Liu D, Ji F, Niu X, Ruan H et al (2020) Machine learning-based integration of large-scale climate drivers can improve the forecast of seasonal rainfall probability in Australia. Environ. Res. Lett. 15(8):084051. https://doi.org/10.1088/1748-9326/ab9e98

    Article  Google Scholar 

  • Freire PKMM, Santos CAG, Silva GBLd (2019) Analysis of the use of discrete wavelet transforms coupled with ANN for short-term streamflow forecasting. Appl Soft Comput 80:494–505. https://doi.org/10.1016/j.asoc.2019.04.024

  • Guermoui M, Bouchouicha K, Bailek N, Boland JW (2021) Forecasting intra-hour variance of photovoltaic power using a new integrated model. Energy Convers Manag 245:114569. https://doi.org/10.1016/j.enconman.2021.114569

    Article  Google Scholar 

  • Hallouz F, Meddi M, Mahé G et al (2020) Analysis of meteorological drought sequences at various timescales in semi-arid climate: case of the Cheliff watershed (northwest of Algeria). Arab J Geosci. 13:280. https://doi.org/10.1007/s12517-020-5256-5

    Article  Google Scholar 

  • Hassan MA, Bailek N, Bouchouicha K, Nwokolo SC (2021) Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks. Renew Energy 171:191–209. https://doi.org/10.1016/j.renene.2021.02.103

    Article  Google Scholar 

  • Hung NQ, Babel MS, Weesakul S, Tripathi NK (2009) An artificial neural network model for rainfall forecasting in Bangkok. Thailand. Hydrol Earth Syst Sci 13:1413–1425. https://doi.org/10.5194/hess-13-1413-2009

    Article  Google Scholar 

  • Ibrahim A, Mirjalili S, El-Said M, Ghoneim SS, Al-Harthi MM, Ibrahim TF, El-Kenawy ESM (2021) Wind speed ensemble forecasting based on deep learning using adaptive dynamic optimization algorithm. IEEE Access 9:125787–125804

    Article  Google Scholar 

  • Keshtegar B, Bouchouicha K, Bailek N et al (2022) Solar irradiance short-term prediction under meteorological uncertainties: survey hybrid artificial intelligent basis music-inspired optimization models. The European Physical Journal Plus 137:362. https://doi.org/10.1140/epjp/s13360-022-02371-w

  • Khan MI, Maity R (2020) Hybrid deep learning approach for multi-step-ahead daily rainfall prediction using GCM simulations. IEEE Access 8:52774–52784. https://doi.org/10.1109/ACCESS.2020.2980977

    Article  Google Scholar 

  • Kim P. Deep learning. (2017) MATLAB Deep Learn. Springer; p. 103–20.

  • Kingma DP. Ba JL (2015). Adam: a method for stochastic optimization. 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc.

  • Kumagai T, Kume T (2012) Influences of diurnal rainfall cycle on CO2 exchange over Bornean tropical rainforests. Ecol Modell 246:91–98. https://doi.org/10.1016/j.ecolmodel.2012.07.014

    Article  Google Scholar 

  • Kumar D, Singh A, Samui P, Jha RK (2019) Forecasting monthly precipitation using sequential modelling. Hydrol Sci J 64:690–700. https://doi.org/10.1080/02626667.2019.1595624

    Article  Google Scholar 

  • Li H, He Y, Yang H et al (2021) Rainfall prediction using optimally pruned extreme learning machines. Nat Hazards 108:799–817. https://doi.org/10.1007/s11069-021-04706-9

    Article  Google Scholar 

  • Lloyd-Hughes B, Saunders MA (2002) Seasonal prediction of European spring precipitation from El Niño–Southern Oscillation and local sea surfaces temperatures. Int J Climatol 22(1–14):2002

    Google Scholar 

  • Makade RG, Jamil B (2018) Statistical analysis of sunshine based global solar radiation (GSR) models for tropical wet and dry climatic Region in Nagpur, India: a case study. Renew Sustain Energy Rev 2018(87):22–43

    Article  Google Scholar 

  • Meddi MM. Assani AA. Meddi H. (2010) Temporal variability of annual rainfall in the Macta and Tafna Catchments. Northwestern Algeria. Water Resour Manag ;24. doi:https://doi.org/10.1007/s11269-010-9635-7.

  • Mislan H, Hardwinarto S, Sumaryono, Aipassa M (2015) Rainfall monthly prediction based on artificial neural network: a case study in Tenggarong Station. East Kalimantan - Indonesia. Procedia Comput Sci 59:142–151. https://doi.org/10.1016/j.procs.2015.07.528

    Article  Google Scholar 

  • Moghaddam MG, Ahmad FBH, Basri M, Rahman MBA (2010) Artificial neural network modeling studies to predict the yield of enzymatic synthesis of betulinic acid ester. Electron J Biotechnol 13:1–12. https://doi.org/10.2225/vol13-issue3-fulltext-9

    Article  Google Scholar 

  • Ouyang Q, Lu W (2018) Monthly rainfall forecasting using echo state networks coupled with data preprocessing methods. Water Resour Manage 32:659–674. https://doi.org/10.1007/s11269-017-1832-1

    Article  Google Scholar 

  • Qian N (1999) On the momentum term in gradient descent learning algorithms. Neural Networks. 12:145–151. https://doi.org/10.1016/S0893-6080(98)00116-6

    Article  Google Scholar 

  • Rodo X, Baert E, Comin FA (1997) Variations in seasonal rainfall in southern Europe during the present century: relationships with the North Atlantic Oscillation and the El Niño Southern Oscillation. Clim Dyn 13(275–284):1997 (In French)

    Google Scholar 

  • Ruder S. (2016) An overview of gradient descent optimization algorithms. ArXiv Prepr ArXiv160904747 2016

  • Santos CAG, Freire PKMM, Silva RMd, Akrami SA (2019) Hybrid wavelet neural network approach for daily inflow forecasting using tropical rainfall measuring mission data. J Hydrol Eng 24(2) 04018062. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001725

  • Srivastava, S., Anand, N., Sharma, S., Dhar, S., & Sinha, L. K. (2020, June). Monthly rainfall prediction using various machine learning algorithms for early warning of landslide occurrence. In 2020 International Conference for Emerging Technology (INCET) (pp. 1-7). IEEE. doi:10.1109/INCET49848.2020.9154184.

  • Tang T, Jiao D, Chen T, Gui G (2022) Medium and long-term precipitation forecasting method based on data augmentation and machine learning algorithms. IEEE J Sel Top Appl Earth Obs Remote Sens. https://doi.org/10.1109/JSTARS.2022.3140442

  • Yan J, Xu T, Yu Y, Xu H (2021) Rainfall Forecast Model Based on the TabNet Model. Water. 13(9):1272. https://doi.org/10.3390/w13091272

    Article  Google Scholar 

  • Yen MH, Liu DW, Hsin YC, Lin CE, Chen CC (2019) Application of the deep learning for the prediction of rainfall in Southern Taiwan. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-49242-6

    Article  Google Scholar 

  • Yorukoglu M, Celik AN (2006) A critical review on the estimation of daily global solar radiation from sunshine duration. Energy Convers Manag 47:2441–2450

    Article  Google Scholar 

  • Zerouali B, Chettih M, Abda Z et al (2021a) Spatiotemporal meteorological drought assessment in a humid Mediterranean region: case study of the Oued Sebaou basin (northern central Algeria). Nat Hazards 108:689–709. https://doi.org/10.1007/s11069-021-04701-0

    Article  Google Scholar 

  • Zerouali B, Chettih M, Abda Z et al (2022) A new regionalization of rainfall patterns based on wavelet transform information and hierarchical cluster analysis in northeastern Algeria. Theor Appl Climatol 147:1489–1510. https://doi.org/10.1007/s00704-021-03883-8

    Article  Google Scholar 

  • Zerouali B, Chettih M, Abda Z, Mesbah M, Djemai M (2020) The use of hybrid methods for change points and trends detection in rainfall series of northern Algeria. Acta Geophys 68(5):1443–1460. https://doi.org/10.1007/s11600-020-00466-5

    Article  Google Scholar 

  • Zerouali B, Al-Ansari N, Chettih M, Mohamed M, Abda Z, Santos CAG, Zerouali B, Elbeltagi A (2021b) An enhanced innovative triangular trend analysis of rainfall based on a spectral approach. Water. 13(5):727. https://doi.org/10.3390/w13050727

    Article  Google Scholar 

  • Zerouali B, Chettih M, Alwetaishi M, Abda Z, Elbeltagi A, Santos CAG, Hussein E, E. (2021c) Evaluation of Karst spring discharge response using time-scale-based methods for a Mediterranean Basin of Northern Algeria. Water 13(21):2946. https://doi.org/10.3390/w13212946

    Article  Google Scholar 

  • Zhang X, Mohanty SN, Parida AK, Pani SK, Dong B, Cheng X (2020) Annual and non-monsoon rainfall prediction modelling using SVR-MLP: an empirical study from Odisha. IEEE Access 8:30223–30233. https://doi.org/10.1109/ACCESS.2020.2972435

    Article  Google Scholar 

Download references

Acknowledgments

The authors are deeply grateful to the Algerian Meteorological Office for providing the data used in the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nadjem Bailek or Celso Augusto Guimarães Santos.

Ethics declarations

Ethics approval

Not applicable.

Informed Consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Broder J. Merkel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbeltagi, A., Zerouali, B., Bailek, N. et al. Optimizing hyperparameters of deep hybrid learning for rainfall prediction: a case study of a Mediterranean basin. Arab J Geosci 15, 933 (2022). https://doi.org/10.1007/s12517-022-10098-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-10098-2

Keywords

Navigation