Skip to main content

Advertisement

Log in

Epigenetics Involvement in Oxaliplatin-Induced Potassium Channel Transcriptional Downregulation and Hypersensitivity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Peripheral neuropathy is the most frequent dose-limiting adverse effect of oxaliplatin. Acute pain symptoms that are induced or exacerbated by cold occur in almost all patients immediately following the first infusions. Evidence has shown that oxaliplatin causes ion channel expression modulations in dorsal root ganglia neurons, which are thought to contribute to peripheral hypersensitivity. Most dysregulated genes encode ion channels involved in cold and mechanical perception, noteworthy members of a sub-group of potassium channels of the K2P family, TREK and TRAAK. Downregulation of these K2P channels has been identified as an important tuner of acute oxaliplatin-induced hypersensitivity. We investigated the molecular mechanisms underlying this peripheral dysregulation in a murine model of neuropathic pain triggered by a single oxaliplatin administration. We found that oxaliplatin-mediated TREK-TRAAK downregulation, as well as downregulation of other K+ channels of the K2P and Kv families, involves a transcription factor known as the neuron-restrictive silencer factor (NRSF) and its epigenetic co-repressors histone deacetylases (HDACs). NRSF knockdown was able to prevent most of these K+ channel mRNA downregulation in mice dorsal root ganglion neurons as well as oxaliplatin-induced acute cold and mechanical hypersensitivity. Interestingly, pharmacological inhibition of class I HDAC reproduces the antinociceptive effects of NRSF knockdown and leads to an increased K+ channel expression in oxaliplatin-treated mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andre T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T et al (2004) Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 350(23):2343–2351

    Article  CAS  PubMed  Google Scholar 

  2. Attal N, Bouhassira D, Gautron M, Vaillant JN, Mitry E, Lepere C et al (2009) Thermal hyperalgesia as a marker of oxaliplatin neurotoxicity: a prospective quantified sensory assessment study. Pain. 144(3):245–252

    Article  CAS  PubMed  Google Scholar 

  3. Cersosimo RJ (2005) Oxaliplatin-associated neuropathy: a review. Ann Pharmacother 39(1):128–135

    Article  CAS  PubMed  Google Scholar 

  4. Krishnan AV, Goldstein D, Friedlander M, Kiernan MC (2005) Oxaliplatin-induced neurotoxicity and the development of neuropathy. Muscle Nerve 32(1):51–60

    Article  CAS  PubMed  Google Scholar 

  5. Pasetto LM, D’Andrea MR, Rossi E, Monfardini S (2006) Oxaliplatin-related neurotoxicity: how and why? Crit Rev Oncol Hematol 59(2):159–168

    Article  PubMed  Google Scholar 

  6. Argyriou AA, Polychronopoulos P, Iconomou G, Chroni E, Kalofonos HP (2008) A review on oxaliplatin-induced peripheral nerve damage. Cancer Treat Rev 34(4):368–377

    Article  CAS  PubMed  Google Scholar 

  7. de Gramont A, Figer A, Seymour M, Homerin M, Hmissi A, Cassidy J, Boni C, Cortes-Funes H et al (2000) Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 18(16):2938–2947

    Article  PubMed  Google Scholar 

  8. Land SR, Kopec JA, Cecchini RS, Ganz PA, Wieand HS, Colangelo LH, Murphy K, Kuebler JP et al (2007) Neurotoxicity from oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: NSABP C-07. J Clin Oncol 25(16):2205–2211

    Article  CAS  PubMed  Google Scholar 

  9. Park SB, Lin CS, Krishnan AV, Goldstein D, Friedlander ML, Kiernan MC (2011) Long-term neuropathy after oxaliplatin treatment: challenging the dictum of reversibility. Oncologist. 16(5):708–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pietrangeli A, Leandri M, Terzoli E, Jandolo B, Garufi C (2006) Persistence of high-dose oxaliplatin-induced neuropathy at long-term follow-up. Eur Neurol 56(1):13–16

    Article  CAS  PubMed  Google Scholar 

  11. Cavaletti G, Tredici G, Petruccioli MG, Donde E, Tredici P, Marmiroli P et al (2001) Effects of different schedules of oxaliplatin treatment on the peripheral nervous system of the rat. Eur J Cancer 37(18):2457–2463

    Article  CAS  PubMed  Google Scholar 

  12. Jamieson SM, Liu J, Connor B, McKeage MJ (2005) Oxaliplatin causes selective atrophy of a subpopulation of dorsal root ganglion neurons without inducing cell loss. Cancer Chemother Pharmacol 56(4):391–399

    Article  CAS  PubMed  Google Scholar 

  13. Xiao WH, Zheng H, Bennett GJ (2012) Characterization of oxaliplatin-induced chronic painful peripheral neuropathy in the rat and comparison with the neuropathy induced by paclitaxel. Neuroscience. 203:194–206

    Article  CAS  PubMed  Google Scholar 

  14. Grolleau F, Gamelin L, Boisdron-Celle M, Lapied B, Pelhate M, Gamelin E (2001) A possible explanation for a neurotoxic effect of the anticancer agent oxaliplatin on neuronal voltage-gated sodium channels. J Neurophysiol 85(5):2293–2297

    Article  CAS  PubMed  Google Scholar 

  15. Kawashiri T, Egashira N, Kurobe K, Tsutsumi K, Yamashita Y, Ushio S et al (2012) L type Ca(2)+ channel blockers prevent oxaliplatin-induced cold hyperalgesia and TRPM8 overexpression in rats. Mol Pain 8:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Park SB, Lin CS, Krishnan AV, Goldstein D, Friedlander ML, Kiernan MC (2011) Dose effects of oxaliplatin on persistent and transient Na+ conductances and the development of neurotoxicity. PLoS One 6(4):e18469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Descoeur J, Pereira V, Pizzoccaro A, Francois A, Ling B, Maffre V, Couette B, Busserolles J et al (2011) Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Mol Med 3(5):266–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gauchan P, Andoh T, Kato A, Kuraishi Y (2009) Involvement of increased expression of transient receptor potential melastatin 8 in oxaliplatin-induced cold allodynia in mice. Neurosci Lett 458(2):93–95

    Article  CAS  PubMed  Google Scholar 

  19. Nassini R, Gees M, Harrison S, De Siena G, Materazzi S, Moretto N et al (2011) Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain. 152(7):1621–1631

    Article  CAS  PubMed  Google Scholar 

  20. Pereira V, Busserolles J, Christin M, Devilliers M, Poupon L, Legha W, Alloui A, Aissouni Y et al (2014) Role of the TREK2 potassium channel in cold and warm thermosensation and in pain perception. Pain. 155(12):2534–2544

    Article  CAS  PubMed  Google Scholar 

  21. Alloui A, Zimmermann K, Mamet J, Duprat F, Noel J, Chemin J et al (2006) TREK-1, a K+ channel involved in polymodal pain perception. EMBO J 25(11):2368–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Noel J, Zimmermann K, Busserolles J, Deval E, Alloui A, Diochot S et al (2009) The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J 28(9):1308–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vivier D, Soussia IB, Rodrigues N, Lolignier S, Devilliers M, Chatelain FC, Prival L, Chapuy E et al (2017) Development of the first two-pore domain potassium channel TWIK-related K+ channel 1-selective agonist possessing in vivo antinociceptive activity. J Med Chem 60(3):1076–1088

    Article  CAS  PubMed  Google Scholar 

  24. Busserolles J, Tsantoulas C, Eschalier A, Lopez Garcia JA (2016) Potassium channels in neuropathic pain: advances, challenges, and emerging ideas. Pain. 157(Suppl 1):S7–S14

  25. Uchida H, Ma L, Ueda H (2010) Epigenetic gene silencing underlies C-fiber dysfunctions in neuropathic pain. J Neurosci 30(13):4806–4814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang D, Yu J (2016) Negative regulation of REST on NR2B in spinal cord contributes to the development of bone cancer pain in mice. Oncotarget. 7(51):85564–85572

    Article  PubMed  PubMed Central  Google Scholar 

  27. Willis DE, Wang M, Brown E, Fones L, Cave JW (2016) Selective repression of gene expression in neuropathic pain by the neuron-restrictive silencing factor/repressor element-1 silencing transcription (NRSF/REST). Neurosci Lett 625:20–25

    Article  CAS  PubMed  Google Scholar 

  28. Zhang F, Gigout S, Liu Y, Wang Y, Hao H, Buckley NJ, Zhang H, Wood IC et al (2019) Repressor element 1-silencing transcription factor drives the development of chronic pain states. Pain. 160(10):2398–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu C, Tang J, Ding T, Chen L, Wang W, Mei XP, He XT, Wang W et al (2017) Neuron-restrictive silencer factor-mediated downregulation of mu-opioid receptor contributes to the reduced morphine analgesia in bone cancer pain. Pain. 158(5):879–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qureshi IA, Gokhan S, Mehler MF (2010) REST and CoREST are transcriptional and epigenetic regulators of seminal neural fate decisions. Cell Cycle 9(22):4477–4486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andres ME, Burger C, Peral-Rubio MJ, Battaglioli E, Anderson ME, Grimes J, Dallman J, Ballas N et al (1999) CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc Natl Acad Sci U S A 96(17):9873–9878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. You A, Tong JK, Grozinger CM, Schreiber SL (2001) CoREST is an integral component of the CoREST- human histone deacetylase complex. Proc Natl Acad Sci U S A 98(4):1454–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Uchida H, Sasaki K, Ma L, Ueda H (2010) Neuron-restrictive silencer factor causes epigenetic silencing of Kv4.3 gene after peripheral nerve injury. Neuroscience. 166(1):1–4

    Article  CAS  PubMed  Google Scholar 

  34. Uchida H, Matsushita Y, Araki K, Mukae T, Ueda H (2015) Histone deacetylase inhibitors relieve morphine resistance in neuropathic pain after peripheral nerve injury. J Pharmacol Sci 128(4):208–211

    Article  CAS  PubMed  Google Scholar 

  35. Bruce AW, Donaldson IJ, Wood IC, Yerbury SA, Sadowski MI, Chapman M, Gottgens B, Buckley NJ (2004) Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci U S A 101(28):10458–10463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M, Lang-Lazdunski L, Widmann C et al (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 23(13):2684–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guyon A, Tardy MP, Rovere C, Nahon JL, Barhanin J, Lesage F (2009) Glucose inhibition persists in hypothalamic neurons lacking tandem-pore K+ channels. J Neurosci 29(8):2528–2533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Janssen PA, Niemegeers CJ, Dony JG (1963) The inhibitory effect of fentanyl and other morphine-like analgesics on the warm water induced tail withdrawl reflex in rats. Arzneimittelforschung. 13:502–507

    CAS  PubMed  Google Scholar 

  39. Yalcin I, Charlet A, Freund-Mercier MJ, Barrot M, Poisbeau P (2009) Differentiating thermal allodynia and hyperalgesia using dynamic hot and cold plate in rodents. J Pain 10(7):767–773

    Article  PubMed  Google Scholar 

  40. Hylden JL, Wilcox GL (1980) Intrathecal morphine in mice: a new technique. Eur J Pharmacol 67(2-3):313–316

    Article  CAS  PubMed  Google Scholar 

  41. Saramaki A, Banwell CM, Campbell MJ, Carlberg C (2006) Regulation of the human p21(waf1/cip1) gene promoter via multiple binding sites for p53 and the vitamin D3 receptor. Nucleic Acids Res 34(2):543–554

    Article  PubMed  PubMed Central  Google Scholar 

  42. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R et al (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31(1):374–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sandoz G, Thummler S, Duprat F, Feliciangeli S, Vinh J, Escoubas P et al (2006) AKAP150, a switch to convert mechano-, pH- and arachidonic acid-sensitive TREK K(+) channels into open leak channels. EMBO J 25(24):5864–5872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sandoz G, Tardy MP, Thummler S, Feliciangeli S, Lazdunski M, Lesage F (2008) Mtap2 is a constituent of the protein network that regulates twik-related K+ channel expression and trafficking. J Neurosci 28(34):8545–8552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Formisano L, Guida N, Valsecchi V, Cantile M, Cuomo O, Vinciguerra A, Laudati G, Pignataro G et al (2015) Sp3/REST/HDAC1/HDAC2 complex represses and Sp1/HIF-1/p300 complex activates ncx1 gene transcription, in brain ischemia and in ischemic brain preconditioning, by epigenetic mechanism. J Neurosci 35(19):7332–7348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leus NG, van den Bosch T, van der Wouden PE, Krist K, Ourailidou ME, Eleftheriadis N et al (2017) HDAC1-3 inhibitor MS-275 enhances IL10 expression in RAW264.7 macrophages and reduces cigarette smoke-induced airway inflammation in mice. Sci Rep 7:45047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Beckers T, Burkhardt C, Wieland H, Gimmnich P, Ciossek T, Maier T, Sanders K (2007) Distinct pharmacological properties of second generation HDAC inhibitors with the benzamide or hydroxamate head group. Int J Cancer 121(5):1138–1148

    Article  CAS  PubMed  Google Scholar 

  48. Bai G, Wei D, Zou S, Ren K, Dubner R (2010) Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia. Mol Pain 6:51

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhou J, Yang CX, Zhong JY, Wang HB (2013) Intrathecal TRESK gene recombinant adenovirus attenuates spared nerve injury-induced neuropathic pain in rats. Neuroreport. 24(3):131–136

    Article  CAS  PubMed  Google Scholar 

  50. Cao XH, Byun HS, Chen SR, Cai YQ, Pan HL (2010) Reduction in voltage-gated K+ channel activity in primary sensory neurons in painful diabetic neuropathy: role of brain-derived neurotrophic factor. J Neurochem 114(5):1460–1475

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen SR, Cai YQ, Pan HL (2009) Plasticity and emerging role of BKCa channels in nociceptive control in neuropathic pain. J Neurochem 110(1):352–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rasband MN, Park EW, Vanderah TW, Lai J, Porreca F, Trimmer JS (2001) Distinct potassium channels on pain-sensing neurons. Proc Natl Acad Sci U S A 98(23):13373–13378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rose K, Ooi L, Dalle C, Robertson B, Wood IC, Gamper N (2011) Transcriptional repression of the M channel subunit Kv7.2 in chronic nerve injury. Pain. 152(4):742–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dionisi M, Ruffinatti FA, Riva B, Lim D, Canta A, Meregalli C et al (2020) Early stimulation of TREK channel transcription and activity induced by oxaliplatin-dependent cytosolic acidification. Int J Mol Sci 21(19):7164

    Article  CAS  PubMed Central  Google Scholar 

  55. Castellanos A, Pujol-Coma A, Andres-Bilbe A, Negm A, Callejo G, Soto D, Noël J, Comes N et al (2020) TRESK background K(+) channel deletion selectively uncovers enhanced mechanical and cold sensitivity. J Physiol 598(5):1017–1038

    Article  CAS  PubMed  Google Scholar 

  56. Wang Y, Liu C, Guo QL, Yan JQ, Zhu XY, Huang CS, Zou WY (2011) Intrathecal 5-azacytidine inhibits global DNA methylation and methyl- CpG-binding protein 2 expression and alleviates neuropathic pain in rats following chronic constriction injury. Brain Res 1418:64–69

    Article  CAS  PubMed  Google Scholar 

  57. Zhang Z, Cai YQ, Zou F, Bie B, Pan ZZ (2011) Epigenetic suppression of GAD65 expression mediates persistent pain. Nat Med 17(11):1448–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tochiki KK, Cunningham J, Hunt SP, Geranton SM (2012) The expression of spinal methyl-CpG-binding protein 2, DNA methyltransferases and histone deacetylases is modulated in persistent pain states. Mol Pain 8:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schoenherr CJ, Anderson DJ (1995) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science. 267(5202):1360–1363

    Article  CAS  PubMed  Google Scholar 

  60. Otto SJ, McCorkle SR, Hover J, Conaco C, Han JJ, Impey S et al (2007) A new binding motif for the transcriptional repressor REST uncovers large gene networks devoted to neuronal functions. J Neurosci 27(25):6729–6739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang J, Chen SR, Chen H, Pan HL (2018) RE1-silencing transcription factor controls the acute-to-chronic neuropathic pain transition and Chrm2 receptor gene expression in primary sensory neurons. J Biol Chem 293(49):19078–19091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alani B, Salehi R, Sadeghi P, Khodagholi F, Digaleh H, Jabbarzadeh-Tabrizi S, Zare M, Korbekandi H (2015) Silencing of Hsp70 intensifies 6-OHDA-induced apoptosis and Hsp90 upregulation in PC12 cells. J Mol Neurosci 55(1):174–183

    Article  CAS  PubMed  Google Scholar 

  63. Alani B, Salehi R, Sadeghi P, Zare M, Khodagholi F, Arefian E, Hakemi MG, Digaleh H (2014) Silencing of Hsp90 chaperone expression protects against 6-hydroxydopamine toxicity in PC12 cells. J Mol Neurosci 52(3):392–402

    Article  CAS  PubMed  Google Scholar 

  64. Mucha M, Ooi L, Linley JE, Mordaka P, Dalle C, Robertson B, Gamper N, Wood IC (2010) Transcriptional control of KCNQ channel genes and the regulation of neuronal excitability. J Neurosci 30(40):13235–13245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Phuket TR, Covarrubias M (2009) Kv4 channels underlie the subthreshold-operating A-type K-current in nociceptive dorsal root ganglion neurons. Front Mol Neurosci 2:3

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ueda H (2006) Molecular mechanisms of neuropathic pain-phenotypic switch and initiation mechanisms. Pharmacol Ther 109(1-2):57–77

    Article  CAS  PubMed  Google Scholar 

  67. Ooi L, Wood IC (2007) Chromatin crosstalk in development and disease: lessons from REST. Nat Rev Genet 8(7):544–554

    Article  CAS  PubMed  Google Scholar 

  68. Matsushita Y, Araki K, Omotuyi O, Mukae T, Ueda H (2013) HDAC inhibitors restore C-fibre sensitivity in experimental neuropathic pain model. Br J Pharmacol 170(5):991–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Formisano L, Guida N, Laudati G, Mascolo L, Di Renzo G, Canzoniero LM (2015) MS-275 inhibits aroclor 1254-induced SH-SY5Y neuronal cell toxicity by preventing the formation of the HDAC3/REST complex on the synapsin-1 promoter. J Pharmacol Exp Ther 352(2):236–243

    Article  PubMed  Google Scholar 

  70. Bardai FH, Price V, Zaayman M, Wang L, D’Mello SR (2012) Histone deacetylase-1 (HDAC1) is a molecular switch between neuronal survival and death. J Biol Chem 287(42):35444–35453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bardai FH, D’Mello SR (2011) Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3beta. J Neurosci 31(5):1746–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Denk F, Huang W, Sidders B, Bithell A, Crow M, Grist J, Sharma S, Ziemek D et al (2013) HDAC inhibitors attenuate the development of hypersensitivity in models of neuropathic pain. Pain. 154(9):1668–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Danaher RJ, Zhang L, Donley CJ, Laungani NA, Hui SE, Miller CS et al (2018) Histone deacetylase inhibitors prevent persistent hypersensitivity in an orofacial neuropathic pain model. Mol Pain 14:1744806918796763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vaiopoulos AG, Athanasoula K, Papavassiliou AG (2014) Epigenetic modifications in colorectal cancer: molecular insights and therapeutic challenges. Biochim Biophys Acta 1842(7):971–980

    Article  CAS  PubMed  Google Scholar 

  75. Ikehata M, Ogawa M, Yamada Y, Tanaka S, Ueda K, Iwakawa S (2014) Different effects of epigenetic modifiers on the cytotoxicity induced by 5-fluorouracil, irinotecan or oxaliplatin in colon cancer cells. Biol Pharm Bull 37(1):67–73

    Article  CAS  PubMed  Google Scholar 

  76. Shah P, Gau Y, Sabnis G (2014) Histone deacetylase inhibitor entinostat reverses epithelial to mesenchymal transition of breast cancer cells by reversing the repression of E-cadherin. Breast Cancer Res Treat 143(1):99–111

    Article  CAS  PubMed  Google Scholar 

  77. Ji M, Lee EJ, Kim KB, Kim Y, Sung R, Lee SJ et al (2015) HDAC inhibitors induce epithelial-mesenchymal transition in colon carcinoma cells. Oncol Rep 33(5):2299–2308

    Article  CAS  PubMed  Google Scholar 

  78. Tomono T, Machida T, Kamioka H, Shibasaki Y, Yano K, Ogihara T (2018) Entinostat reverses P-glycoprotein activation in snail-overexpressing adenocarcinoma HCC827 cells. PLoS One 13(7):e0200015

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Florian Lesage (IPMC, Nice, France) who provided us with the triple TREK-TRAAK knockout mice, and Yoan Renaud who performed the in silico data analysis using the TRANSFAC and FIMO programs.

Data Availability Statement

Data will be made available on a reasonable request.

Funding

This project was funded by the Regional Council of Auvergne (Conseil Régional d’Auvergne) together with the European Fund for Regional Economic Development (FEDER), Clermont Auvergne University, and the French government through the programme “Investissements d’Avenir” (I-Site CAP 20-25).

Author information

Authors and Affiliations

Authors

Contributions

V.P. and S. Lamoine conducted the experiments, analyzed the data, and participated in the preparation of the manuscript. M.C., Y.A., and L.P. participated in experiments. S. Lolignier, D.B., and A.P. were associated with the design and analysis of the research. J.B., A.E., and E.B. designed the research, supervised the project, participated in data analysis, and wrote the paper.

Corresponding author

Correspondence to Jérôme Busserolles.

Ethics declarations

All the animal procedures were approved by the local Animal Ethics Committee and the experiments were performed according to the guidelines provided by the European Community on the care and use of animals (Directive 2010/63/EU).

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Vanessa Pereira and Sylvain Lamoine are co-first author.

Supplementary Information

ESM 1

(DOCX 827 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, V., Lamoine, S., Cuménal, M. et al. Epigenetics Involvement in Oxaliplatin-Induced Potassium Channel Transcriptional Downregulation and Hypersensitivity. Mol Neurobiol 58, 3575–3587 (2021). https://doi.org/10.1007/s12035-021-02361-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02361-6

Keywords

Navigation