Skip to main content

Advertisement

Log in

Oxaliplatin causes selective atrophy of a subpopulation of dorsal root ganglion neurons without inducing cell loss

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Peripheral neuropathy is induced by multiple doses of oxaliplatin and interferes with the clinical utility of the drug in patients with colorectal cancer. In this study, we sought to determine whether cell loss or selective neuronal damage was the basis for the peripheral neuropathy caused by oxaliplatin. Adult female rats were given 1.85 mg/kg oxaliplatin twice per week for 8 weeks. Nerve conduction and L5 dorsal root ganglia (DRG) were studied 1 week after the completion of all treatment. No mortality occurred during oxaliplatin treatment, but the rate of body weight gain was reduced compared to age-matched vehicle-treated controls. Oxaliplatin slowed conduction velocity and delayed conduction times in peripheral sensory nerves, without affecting central or motor nerve conduction. In L5 DRG, total numbers of neurons were unchanged by oxaliplatin, but there were significant reductions in neuronal size distribution, ganglion volume, average cell size and the relative frequency of large cells. In addition, the relative frequency of small DRG cells was increased by oxaliplatin. Oxaliplatin significantly altered the size distribution and average cell body area of the predominantly large parvalbumin-immunoreactive DRG neurons without affecting the frequency of parvalbumin staining. On the contrary, neither the staining frequency nor the size distribution of the predominantly small substance P-immunoreactive DRG neurons was changed by oxaliplatin. In conclusion, oxaliplatin causes selective atrophy of a subpopulation of DRG neurons with predominantly large parvalbumin-expressing cells without inducing neuronal loss. Because DRG cell body size and axonal conduction velocity are positively correlated, neuronal atrophy may be the morphological basis for the development of decreased sensory nerve conduction velocity that characterizes oxaliplatin-induced peripheral neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adelsberger H, Quasthoff S, Grosskreutz J, Lepier A, Eckel F, Lersch C (2000) The chemotherapeutic oxaliplatin alters voltage-gated Na(+) channel kinetics on rat sensory neurons. Eur J Pharmacol 406:25–32

    CAS  PubMed  Google Scholar 

  2. Apfel SC, Arezzo JC, Lipson L, Kessler JA (1992) Nerve growth factor prevents experimental cisplatin neuropathy. Ann Neurol 31:76–80

    CAS  PubMed  Google Scholar 

  3. Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–308

    CAS  PubMed  Google Scholar 

  4. Barajon I, Bersani M, Quartu M, Del Fiacco M, Cavaletti G, Holst JJ, Tredici G (1996) Neuropeptides and morphological changes in cisplatin-induced dorsal root ganglion neuronopathy. Exp Neurol 138:93–104

    CAS  PubMed  Google Scholar 

  5. Bergman E, Ulfhake B (1998) Loss of primary sensory neurons in the very old rat: neuron number estimates using the disector method and confocal optical sectioning. J Comp Neurol 396:211–222

    CAS  PubMed  Google Scholar 

  6. Black JA, Dib-Hajj S, McNabola K, Jeste S, Rizzo MA, Kocsis JD, Waxman SG (1996) Spinal sensory neurons express multiple sodium channel alpha-subunit mRNAs. Brain Res Mol Brain Res 43:117–131

    CAS  PubMed  Google Scholar 

  7. Carr PA, Yamamoto T, Karmy G, Baimbridge KG, Nagy JI (1989) Analysis of parvalbumin and calbindin D28k-immunoreactive neurons in dorsal root ganglia of rat in relation to their cytochrome oxidase and carbonic anhydrase content. Neuroscience 33:363–371

    CAS  PubMed  Google Scholar 

  8. Cascinu S, Catalano V, Cordella L, Labianca R, Giordani P, Baldelli AM, Beretta GD, Ubiali E, Catalano G (2002) Neuroprotective effect of reduced glutathione on oxaliplatin-based chemotherapy in advanced colorectal cancer: a randomized, double-blind, placebo-controlled trial. J Clin Oncol 20:3478–3483

    CAS  PubMed  Google Scholar 

  9. Cavaletti G, Tredici G, Marmiroli P, Petruccioli MG, Barajon I, Fabbrica D (1992) Morphometric study of the sensory neuron and peripheral nerve changes induced by chronic cisplatin (DDP) administration in rats. Acta Neuropathol 84:364–371

    CAS  PubMed  Google Scholar 

  10. Cavaletti G, Tredici G, Petruccioli MG, Donde E, Tredici P, Marmiroli P, Minoia C, Ronchi A, Bayssas M, Etienne GG (2001) Effects of different schedules of oxaliplatin treatment on the peripheral nervous system of the rat. Eur J Cancer 37:2457–2463

    CAS  PubMed  Google Scholar 

  11. Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475

    CAS  PubMed  Google Scholar 

  12. de Gramont A, Figer A, Seymour M, Homerin M, Hmissi A, Cassidy J, Boni C, Cortes-Funes H, Cervantes A, Freyer G, Papamichael D, Le Bail N, Louvet C, Hendler D, de Braud F, Wilson C, Morvan F, Bonetti A (2000) Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 18:2938–2947

    PubMed  Google Scholar 

  13. Ernfors P, Lee KF, Kucera J, Jaenisch R (1994) Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77:503–512

    CAS  PubMed  Google Scholar 

  14. Extra JM, Marty M, Brienza S, Misset JL (1998) Pharmacokinetics and safety profile of oxaliplatin. Semin Oncol 25:13–22

    CAS  Google Scholar 

  15. Fischer SJ, McDonald ES, Gross L, Windebank AJ (2001) Alterations in cell cycle regulation underlie cisplatin induced apoptosis of dorsal root ganglion neurons in vivo. Neurobiol Dis 8:1027–1035

    CAS  PubMed  Google Scholar 

  16. Garufi C, Pietrangeli A, Brienza S, Mari AA, Pace R, Giannarelli D, Mari DR, Zappala A, Vaccaro A, Mari DA, Iandolo B, Nistico C, Terzoli E (1999) Electrophysiological evaluation of oxaliplatin neurotoxicity (abstract 938). Proc Am Soc Clin Oncol 18:244a

    Google Scholar 

  17. Giacchetti S, Perpoint B, Zidani R, Le Bail N, Faggiuolo R, Focan C, Chollet P, Llory JF, Letourneau Y, Coudert B, Bertheaut-Cvitkovic F, Larregain-Fournier D, Le Rol A, Walter S, Adam R, Misset JL, Levi F (2000) Phase III multicenter randomized trial of oxaliplatin added to chronomodulated fluorouracil-leucovorin as first-line treatment of metastatic colorectal cancer. J Clin Oncol 18:136–147

    CAS  PubMed  Google Scholar 

  18. Gill JS, Windebank AJ (1998) Cisplatin-induced apoptosis in rat dorsal root ganglion neurons is associated with attempted entry into the cell cycle. J Clin Invest 101:2842–2850

    CAS  PubMed  Google Scholar 

  19. Grolleau F, Gamelin L, Boisdron-Celle M, Lapied B, Pelhate M, Gamelin E (2001) A possible explanation for a neurotoxic effect of the anticancer agent oxaliplatin on neuronal voltage-gated sodium channels. J Neurophysiol 85:2293–2297

    CAS  PubMed  Google Scholar 

  20. Grothey A, Deschler B, Kroening H, Ridwelski K, Reichardt P, Kretzschmar A, Clemens M, Hirschmann W, Lorenz M, Asperger W, Buechele T, Schmoll H-J (2002) Phase III study of bolus 5-fluorouracil (5-FU)/folinic acid (FA) (Mayo) vs weekly high-dose 24h 5-FU infusion/FA + oxaliplatin (OXA) (FUFOX) in advanced colorectal cancer (ACRC) (abstract 512). Proc Am Soc Clin Oncol 21:129a

    Google Scholar 

  21. Grothey A (2003) Oxaliplatin-safety profile: neurotoxicity. Semin Oncol 30:5–13

    CAS  Google Scholar 

  22. Groves MJ, An SF, Giometto B, Scaravilli F (1999) Inhibition of sensory neuron apoptosis and prevention of loss by NT-3 administration following axotomy. Exp Neurol 155:284–294

    CAS  PubMed  Google Scholar 

  23. Gundersen HJ, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263

    PubMed  Google Scholar 

  24. Harper AA, Lawson SN (1985) Conduction velocity is related to morphological cell type in rat dorsal root ganglion neurones. J Physiol 359:31–46

    CAS  PubMed  Google Scholar 

  25. Hokfelt T, Kellerth JO, Nilsson G, Pernow B (1975) Substance P: localization in the central nervous system and in some primary sensory neurons. Science 190:889–890

    CAS  PubMed  Google Scholar 

  26. Holmes J, Stanko J, Varchenko M, Ding H, Madden VJ, Bagnell CR, Wyrick SD, Chaney SG (1998) Comparative neurotoxicity of oxaliplatin, cisplatin, and ormaplatin in a Wistar rat model. Toxicol Sci 46:342–351

    CAS  PubMed  Google Scholar 

  27. Kishi M, Tanabe J, Schmelzer JD, Low PA (2002) Morphometry of dorsal root ganglion in chronic experimental diabetic neuropathy. Diabetes 51:819–824

    CAS  PubMed  Google Scholar 

  28. Lawson SN (1992) Morphological and biochemical cell types of sensory neurons. In: Scott SA (ed) Sensory neurons: diversity, development and plasticity. Oxford University Press, New York, pp 27–59

    Google Scholar 

  29. Lee KH, Chung K, Chung JM, Coggeshall RE (1986) Correlation of cell body size, axon size, and signal conduction velocity for individually labelled dorsal root ganglion cells in the cat. J Comp Neurol 243:335–346

    CAS  PubMed  Google Scholar 

  30. Lehky TJ, Leonard GD, Wilson RH, Grem JL, Floeter MK (2004) Oxaliplatin-induced neurotoxicity: acute hyperexcitability and chronic neuropathy. Muscle Nerve 29:387–392

    CAS  PubMed  Google Scholar 

  31. McKeage MJ, Boxall FE, Jones M, Harrap KR (1994) Lack of neurotoxicity of oral bisacetatoamminedichlorocyclohexylamine-platinum(IV) in comparison to cisplatin and tetraplatin in the rat. Cancer Res 54:629–631

    CAS  PubMed  Google Scholar 

  32. McKeage MJ, Hsu T, Screnci D, Haddad G, Baguley BC (2001) Nucleolar damage correlates with neurotoxicity induced by different platinum drugs. Br J Cancer 85:1219–1225

    CAS  PubMed  Google Scholar 

  33. Muller LJ, Gerritsen van der Hoop R, Moorer-van Delft CM, Gispen WH, Roubos EW (1990) Morphological and electrophysiological study of the effects of cisplatin and ORG.2766 on rat spinal ganglion neurons. Cancer Res 50:2437–2442

    CAS  PubMed  Google Scholar 

  34. O’Dwyer PJ, Johnson SW (2003) Current status of oxaliplatin in colorectal cancer. Semin Oncol 30:78–87

    CAS  PubMed  Google Scholar 

  35. Peltier AC, Russell JW (2002) Recent advances in drug-induced neuropathies. Curr Opin Neurol 15:633–638

    PubMed  Google Scholar 

  36. Popken GJ, Farel PB (1997) Sensory neuron number in neonatal and adult rats estimated by means of stereologic and profile-based methods. J Comp Neurol 386:8–15

    CAS  PubMed  Google Scholar 

  37. Pover CM, Coggeshall RE (1991) Verification of the disector method for counting neurons, with comments on the empirical method. Anat Rec 231:573–578

    CAS  PubMed  Google Scholar 

  38. Price J (1985) An immunohistochemical and quantitative examination of dorsal root ganglion neuronal subpopulations. J Neurosci 5:2051–2059

    CAS  PubMed  Google Scholar 

  39. Raymond E, Faivre S, Woynarowski JM, Chaney SG (1998) Oxaliplatin: mechanism of action and antineoplastic activity. Semin Oncol 25:4–12

    CAS  Google Scholar 

  40. Schmidt Y, Unger JW, Bartke I, Reiter R (1995) Effect of nerve growth factor on peptide neurons in dorsal root ganglia after taxol or cisplatin treatment and in diabetic (db/db) mice. Exp Neurol 132:16–23

    CAS  PubMed  Google Scholar 

  41. Screnci D, Er HM, Hambley TW, Galettis P, Brouwer W, McKeage MJ (1997) Stereoselective peripheral sensory neurotoxicity of diaminocyclohexane platinum enantiomers related to ormaplatin and oxaliplatin. Br J Cancer 76:502–510

    CAS  PubMed  Google Scholar 

  42. Screnci D, McKeage MJ, Galettis P, Hambley TW, Palmer BD, Baguley BC (2000) Relationships between hydrophobicity, reactivity, accumulation and peripheral nerve toxicity of a series of platinum drugs. Br J Cancer 82:966–972

    CAS  PubMed  Google Scholar 

  43. Stanley EF (1981) Sensory and motor nerve conduction velocities and the latency of the H reflex during growth of the rat. Exp Neurol 71:497–506

    CAS  PubMed  Google Scholar 

  44. Tomiwa K, Nolan C, Cavanagh JB (1986) The effects of cisplatin on rat spinal ganglia: a study by light and electron microscopy and by morphometry. Acta Neuropathol 69:295–308

    CAS  PubMed  Google Scholar 

  45. West MJ (1999) Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 22:51–61

    CAS  PubMed  Google Scholar 

  46. Wilson RH, Lehky T, Thomas RR, Quinn MG, Floeter MK, Grem JL (2002) Acute oxaliplatin-induced peripheral nerve hyperexcitability. J Clin Oncol 20:1767–1774

    CAS  PubMed  Google Scholar 

  47. Yoshida S, Matsuda Y (1979) Studies on sensory neurons of the mouse with intracellular-recording and horseradish peroxidase-injection techniques. J Neurophysiol 42:1134–1145

    CAS  PubMed  Google Scholar 

  48. Zhang X, Wiesenfeld-Hallin Z, Hokfelt T (1994) Effect of peripheral axotomy on expression of neuropeptide Y receptor mRNA in rat lumbar dorsal root ganglia. Eur J Neurosci 6:43–57

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Cancer Society of New Zealand. Stephen Jamieson is the recipient of a University of Auckland Doctoral Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MJ McKeage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamieson, S., Liu, J., Connor, B. et al. Oxaliplatin causes selective atrophy of a subpopulation of dorsal root ganglion neurons without inducing cell loss. Cancer Chemother Pharmacol 56, 391–399 (2005). https://doi.org/10.1007/s00280-004-0953-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-004-0953-4

Keywords

Navigation