Skip to main content
Log in

Silencing of Hsp90 Chaperone Expression Protects Against 6-Hydroxydopamine Toxicity in PC12 Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder that has been shown to be associated with oxidative stress. This phenomenon occurs primarily via generation of 6-hydroxydopamine (6-OHDA) in catecholaminergic neurons leading to activation of apoptosis. The 90-kDa heat shock protein (Hsp90) functions as a chaperone in maintaining the functional stability and viability of cells under a transforming pressure. Since Hsp90 binds to inactive transcription factor heat shock factor-1 (HSF-1), inhibition of Hsp90 could activate HSF-1 and transcription of heat shock element containing genes subsequently, like Hsp70 as an anti-apoptotic factor. Our trial of silencing Hsp90 expression through transfection of Hsp90 siRNAs into neuronal PC12 cells being exposed to 6-OHDA resulted in the inhibition of pro-apoptotic factors, Bax, caspase-3, and PARP and upregulation of anti-apoptotic factor, Bcl2. In this manner, our data suggest a protective role for Hsp70 as it was observed to be induced upon Hsp90 knockdown. Furthermore, our results showed that Hsp90 silencing against 6-OHDA-induced oxidative stress may associate with upregulation of nuclear factor-erythroid 2-related factor 2. In summary, we found that silencing of Hsp90 expression leads to induction of cytoprotective pathways which can protect neurons against apoptosis in a PD model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aridon P, Geraci F, Turturici G, D’Amelio M, Savettieri G, Sconzo G (2011) Protective role of heat shock proteins in Parkinson’s disease. Neurodegener Dis 8:155–168

    Article  CAS  PubMed  Google Scholar 

  • Basu A, Haldar S (1998) The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. Mol Hum Reprod 4:1099–1109

    Article  CAS  PubMed  Google Scholar 

  • Bienemann AS, Lee YB, Howarth J, Uney JB (2008) Hsp70 suppresses apoptosis in sympathetic neurones by preventing the activation of c-Jun. J Neurochem 104:271–278

    CAS  PubMed  Google Scholar 

  • Blum D, Torch S, Lambeng N et al (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65:135–172

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown IR (2007) Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci 1113:147–158

    Article  CAS  PubMed  Google Scholar 

  • Cao TT, Ma L, Kandpal G, Warren L, Hess JF, Seabrook GR (2005) Increased nuclear factor-erythroid 2 p45-related factor 2 activity protects SH-SY5Y cells against oxidative damage. J Neurochem 95:406–417

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH, Yoshida Y, Saito Y, Niki E (2005) Adaptation to hydrogen peroxide enhances PC12 cell tolerance against oxidative damage. Neurosci Lett 383:256–259

    Google Scholar 

  • Choi WS, Yoon SY, Oh TH, Choi EJ, O’Malley KL, Oh YJ (1999) Two distinct mechanisms are involved in 6-hydroxydopamine- and MPP +-induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK. J Neurosci Res 57:86–94

    Article  CAS  PubMed  Google Scholar 

  • Csermely P, Schnaider T, Soti C, Prohászka Z, Nardai G (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129–168

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado A, Moreno-Murciano P, Pedraza-Chaverri J (2009) The transcription factor Nrf2 as a new therapeutic target in Parkinson’s disease. Expert Opin Ther Targets 13:319–329

    Article  CAS  PubMed  Google Scholar 

  • Cummings CJ, Sun Y, Opal P et al (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10:1511–1518

    Article  CAS  PubMed  Google Scholar 

  • Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Wolfer DP, Lipp HP, Bueler H (2005) Hsp70 gene transfer by adeno-associated virus inhibits MPTP-induced nigrostriatal degeneration in the mouse model of Parkinson disease. Mol Ther 11:80–88

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  PubMed  Google Scholar 

  • Gandhi S, Wood NW (2005) Molecular pathogenesis of Parkinson’s disease. Hum Mol Genet 2:2749–2755

    Article  Google Scholar 

  • Hanrott K, Gudmunsen L, O’Neill MJ, Wonnacott S (2006) 6-Hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase Cdelta. J Biol Chem 281:5373–5382

    Article  CAS  PubMed  Google Scholar 

  • Hara H, Ohta M, Adachi T (2006) Apomorphine protects against 6-hydroxydopamine-induced neuronal cell death through activation of the Nrf2-ARE pathway. J Neurosci Res 84:860–866

    Article  CAS  PubMed  Google Scholar 

  • Harper SJ, LoGrasso P (2001) Signalling for survival and death in neurons: the role of stress-activated kinases, JNK and p38. Cell Signal 13:299–310

    Article  CAS  PubMed  Google Scholar 

  • Hensen SM, Heldens L, van Enckevort CM, van Genesen ST, Pruijn GJ, Lubsen NH (2013) Activation of the antioxidant response in methionine deprived human cells results in an HSF1-independent increase in HSPA1A mRNA levels. Biochimie 95:1245–1251

    Article  CAS  PubMed  Google Scholar 

  • Jakel RJ, Kern JT, Johnson DA, Johnson JA (2005) Induction of the protective antioxidant response element pathway by 6-hydroxydopamine in vivo and in vitro. Toxicol Sci 87:176–186

    Article  CAS  PubMed  Google Scholar 

  • Jakel RJ, Townsend JA, Kraft AD, Johnson JA (2007) Nrf2-mediated protection against 6-hydroxydopamine. Brain Res 1144:192–201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalia SK, Kalia LV, McLean PJ (2010) Molecular chaperones as rational drug targets for Parkinson’s disease therapeutics. CNS Neurol Disord Drug Targets 9:741–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalmar B, Greensmith L (2009) Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev 61:310–318

    Article  CAS  PubMed  Google Scholar 

  • Kitamei H, Kitaichi N, Yoshida K et al (2007) Association of heat shock protein 70 induction and the amelioration of experimental autoimmune uveoretinitis in mice. Immunobiology 212:11–18

    Article  CAS  PubMed  Google Scholar 

  • Klettner A (2004) The induction of heat shock proteins as a potential strategy to treat neurodegenerative disorders. Drug News Perspect 17:299–306

    Article  CAS  PubMed  Google Scholar 

  • Kotlo KU, Yehiely F, Efimova E, Harasty H, Hesabi B, Shchors K, Einat P, Rozen A, Berent E, Deiss LP (2003) Nrf2 is an inhibitor of the Fas pathway as identified by Achilles’ Heel Method, a new function-based approach to gene identification in human cells. Oncogene 22:797–806

    Article  CAS  PubMed  Google Scholar 

  • Kutuk O, Basaga H (2003) Aspirin prevents apoptosis and NF-kappaB activation induced by H2O2 in hela cells. Free Radic Res 37:1267–1276

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Johnson JA (2004) An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol 37:139–143

    Article  CAS  PubMed  Google Scholar 

  • Lotharius J, Dugan LL, O’Malley KL (1999) Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J Neurosci 19:1284–1293

    CAS  PubMed  Google Scholar 

  • Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    Article  CAS  PubMed  Google Scholar 

  • Manfredsson FP, Lewin AS, Mandel RJ (2006) RNA knockdown as a potential therapeutic strategy in Parkinson’s disease. Gene Ther 13:517–524

    Article  CAS  PubMed  Google Scholar 

  • Mook OR, Baas F, de Wissel MB, Fluiter K (2007) Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther 6:833–843

    Article  CAS  PubMed  Google Scholar 

  • Nagel F, Falkenburger BH, Tönges L, Kowsky S, Pöppelmeyer C, Schulz JB, Bähr M, Dietz GP (2008) Tat-Hsp70 protects dopaminergic neurons in midbrain cultures and in the substantia nigra in models of Parkinson’s disease. J Neurochem 105:853–864

    Article  CAS  PubMed  Google Scholar 

  • Niture SK, Jaiswal AK (2010) Hsp90 interaction with INrf2(Keap1) mediates stress-induced Nrf2 activation. J Biol Chem 285:36865–36875

    Article  CAS  PubMed  Google Scholar 

  • Niture SK, Jaiswal AK (2012) Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J Biol Chem 287:9873–9886

    Article  CAS  PubMed  Google Scholar 

  • Ochu EE, Rothwell NJ, Waters CM (1998) Caspases mediate 6-hydroxydopamine-induced apoptosis but not necrosis in PC12 cells. J Neurochem 70:2637–2640

    Article  CAS  PubMed  Google Scholar 

  • Salehi AH, Morris SJ, Ho W-C et al (2006) AEG3482 is an antiapoptotic compound that inhibits Jun kinase activity and cell death through induced expression of heat shock protein 90. Chem Biol 13:213–223

    Article  CAS  PubMed  Google Scholar 

  • Sayre LM, Smith MA, Perry G (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 8:721–738

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord 26:1049–1055

    Article  PubMed  Google Scholar 

  • Shen HY, He JC, Wang Y, Huang QY, Chen JF (2005) Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. J Biol Chem 280:39962–39969

    Article  CAS  PubMed  Google Scholar 

  • Siebert A, Desai V, Chandrasekaran K, Fiskum G, Jafri MS (2009) Nrf2 activators provide neuroprotection against 6-hydroxydopamine toxicity in rat organotypic nigrostriatal cocultures. J Neurosci Res 87:1659–1669

    Article  CAS  PubMed  Google Scholar 

  • Stankiewicz AR, Lachapelle G, Foo CP, Radicioni SM, Mosser DD (2005) Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 280:38729–38739

    Article  CAS  PubMed  Google Scholar 

  • Surendran S, Rajasankar S (2010) Parkinson’s disease: oxidative stress and therapeutic approaches. Neurol Sci 31:531–540

    Article  PubMed  Google Scholar 

  • Tkachev VO, Menshchikova EB, Zenkov NK (2011) Mechanism of the Nrf2/Keap1/ARE signaling system. Biochemistry (Mosc) 76:407–422

    Google Scholar 

  • Tsang AH, Chung KK (2009) Oxidative and nitrosative stress in Parkinson’s disease. Biochim Biophys Acta 1792:643–650

    Article  CAS  PubMed  Google Scholar 

  • Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23:425–428

    Article  CAS  PubMed  Google Scholar 

  • Woodgate A, MacGibbon G, Walton M, Dragunow M (1999) The toxicity of 6-hydroxydopamine on PC12 and P19 cells. Brain Res Mol Brain Res 69:84–92

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ahn YH, Benjamin IJ, Honda T, Hicks RJ, Calabrese V, Cole PA, Dinkova-Kostova AT (2011) HSF1-dependent upregulation of Hsp70 by sulfhydryl-reactive inducers of the KEAP1/NRF2/ARE pathway. Chem Biol 18:1355–1361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Y, Gu G, Goodlett DR, Zhang T, Pan C, Montine TJ, Montine KS, Aebersold RH, Zhang J (2004) Analysis of alpha-synuclein-associated proteins by quantitative proteomics. J Biol Chem 279:39155–39164

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Huang Y, Przedborski S (2008) Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci 1147:93–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported financially by Iran National Science Foundation (INSF, grant number 90001703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrang Alani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alani, B., Salehi, R., Sadeghi, P. et al. Silencing of Hsp90 Chaperone Expression Protects Against 6-Hydroxydopamine Toxicity in PC12 Cells. J Mol Neurosci 52, 392–402 (2014). https://doi.org/10.1007/s12031-013-0163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0163-9

Keywords

Navigation