Ruegsegger GN, Booth FW (2017) Health benefits of exercise. Cold Spring Harb Perspect Med 8(7):a029694. https://doi.org/10.1101/cshperspect.a029694
CAS
Article
Google Scholar
WHO (2018) Global action plan on physical activity 2018–2030: more active people for a healthier world. World Health Organization, Geneva
Google Scholar
Foley TE, Fleshner M (2008) Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. NeuroMolecular Med 10(2):67–80. https://doi.org/10.1007/s12017-008-8032-3
CAS
Article
PubMed
Google Scholar
Erickson KI, Miller DL, Weinstein AM, Akl SL, Banducci S (2012) Physical activity and brain plasticity in late adulthood: a conceptual and comprehensive review. Ageing Research 3(1):e6. https://doi.org/10.4081/ar.2012.e6
Article
Google Scholar
Dayan E, Cohen LG (2011) Neuroplasticity subserving motor skill learning. Neuron 72(3):443–454. https://doi.org/10.1016/j.neuron.2011.10.008
CAS
Article
PubMed
PubMed Central
Google Scholar
Dishman RK, Berthoud HR, Booth FW, Cotman CW, Edgerton VR, Fleshner MR, Gandevia SC, Gomez-Pinilla F et al (2006) Neurobiology of exercise. Obesity 14(3):345–356. https://doi.org/10.1038/oby.2006.46
CAS
Article
PubMed
Google Scholar
Goldstein RE (1990) Exercise capacity. In: Walker HK, Hall WD, Hurst JW (eds) Clinical Methods: the history, physical, and laboratory examinations, 3rd edn. Butterworths, Boston
Google Scholar
American College of Sport Medicine (2018) ACSM’s guidelines for exercise testing and prescription, Tenth edn. Wolters Kluwer Health, Philadelphia
Google Scholar
Bedford TG, Tipton CM, Wilson NC, Oppliger RA, Gisolfi CV (1979) Maximum oxygen consumption of rats and its changes with various experimental procedures. J Appl Physiol 47(6):1278–1283. https://doi.org/10.1152/jappl.1979.47.6.1278
CAS
Article
PubMed
Google Scholar
Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346(11):793–801. https://doi.org/10.1056/NEJMoa011858
Article
PubMed
Google Scholar
Bergeron MF, Mountjoy M, Armstrong N, Chia M, Côté J, Emery CA, Faigenbaum A, Hall G et al (2015) International Olympic Committee consensus statement on youth athletic development. Br J Sports Med 49(13):843–851. https://doi.org/10.1136/bjsports-2015-094962
Article
PubMed
Google Scholar
Lloyd RS, Oliver JL, Faigenbaum AD, Howard R, Croix MBDS, Williams CA, Best TM, Alvar BA et al (2015) Long-term athletic development-part 1: a pathway for all youth. The Journal of Strength & Conditioning Research 29(5):1439–1450. https://doi.org/10.1519/JSC.0000000000000756
Article
Google Scholar
Caballero A, Granberg R, Tseng KY (2016) Mechanisms contributing to prefrontal cortex maturation during adolescence. Neurosci Biobehav Rev 70:4–12. https://doi.org/10.1016/j.neubiorev.2016.05.013
Article
PubMed
PubMed Central
Google Scholar
Caballero A, Tseng KY (2016) GABAergic function as a limiting factor for prefrontal maturation during adolescence. Trends Neurosci 39(7):441–448. https://doi.org/10.1016/j.tins.2016.04.010
CAS
Article
PubMed
PubMed Central
Google Scholar
Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24(4):417–463. https://doi.org/10.1016/s0149-7634(00)00014-2
CAS
Article
PubMed
Google Scholar
Hopkins ME, Nitecki R, Bucci DJ (2011) Physical exercise during adolescence versus adulthood: differential effects on object recognition memory and brain-derived neurotrophic factor levels. Neuroscience 194:84–94. https://doi.org/10.1016/j.neuroscience.2011.07.071
CAS
Article
PubMed
PubMed Central
Google Scholar
Belcher BR, Zink J, Azad A, Campbell CE, Chakravartti SP, Herting MM (2020) The roles of physical activity, exercise, and fitness in promoting resilience during adolescence: effects on mental well-being and brain development. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. https://doi.org/10.1016/j.bpsc.2020.08.005
Dwyer JB, Leslie FM (2016) Adolescent maturation of dopamine D1 and D2 receptor function and interactions in rodents. PLoS One 11(1):e0146966. https://doi.org/10.1371/journal.pone.0146966
CAS
Article
PubMed
PubMed Central
Google Scholar
Wickens JR, Reynolds JN, Hyland BI (2003) Neural mechanisms of reward-related motor learning. Curr Opin Neurobiol 13(6):685–690. https://doi.org/10.1016/j.conb.2003.10.013
CAS
Article
PubMed
Google Scholar
Willuhn I, Steiner H (2008) Motor-skill learning in a novel running-wheel task is dependent on D1 dopamine receptors in the striatum. Neuroscience 153(1):249–258. https://doi.org/10.1016/j.neuroscience.2008.01.041
CAS
Article
PubMed
PubMed Central
Google Scholar
Crisp KM, Gallagher BR, Mesce KA (2012) Mechanisms contributing to the dopamine induction of crawl-like bursting in leech motoneurons. J Exp Biol 215(17):3028–3036. https://doi.org/10.1242/jeb.069245
CAS
Article
PubMed
Google Scholar
Steiner H, Tseng KY (2016) Handbook of basal ganglia structure and function. Academic Press, Elsevier
Google Scholar
Tritsch NX, Sabatini BL (2012) Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76(1):33–50. https://doi.org/10.1016/j.neuron.2012.09.023
CAS
Article
PubMed
PubMed Central
Google Scholar
Schwartz J-C, Giros B, Martres M-P, Sokoloff P (1992) The dopamine receptor family: molecular biology and pharmacology. In: Seminars in Neuroscience, vol 2. Elsevier, pp. 99–108. https://doi.org/10.1016/1044-5765(92)90008-P
Kumar U, Patel SC (2007) Immunohistochemical localization of dopamine receptor subtypes (D1R–D5R) in Alzheimer’s disease brain. Brain Res 1131:187–196. https://doi.org/10.1016/j.brainres.2006.10.049
CAS
Article
PubMed
Google Scholar
Beaulieu J-M, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63(1):182–217. https://doi.org/10.1124/pr.110.002642
CAS
Article
PubMed
Google Scholar
Presti MF, Mikes HM, Lewis MH (2003) Selective blockade of spontaneous motor stereotypy via intrastriatal pharmacological manipulation. Pharmacol Biochem Behav 74(4):833–839. https://doi.org/10.1016/S0091-3057(02)01081-X
CAS
Article
PubMed
Google Scholar
Meyer ME (1993) Effects of intraaccumbens dopamine agonist SKF38393 and antagonist SCH23390 on locomotor activities in rats. Pharmacol Biochem Behav 45(4):843–847. https://doi.org/10.1016/0091-3057(93)90130-l
CAS
Article
PubMed
Google Scholar
Horvitz JC, Williams G, Joy R (2001) Time-dependent actions of D 2 family agonist quinpirole on spontaneous behavior in the rat: dissociation between sniffing and locomotion. Psychopharmacology 154(4):350–355. https://doi.org/10.1007/s002130000677
CAS
Article
PubMed
Google Scholar
Simon V, Parra A, Minarro J, Arenas M, Vinader-Caerols C, Aguilar M (2000) Predicting how equipotent doses of chlorpromazine, haloperidol, sulpiride, raclopride and clozapine reduce locomotor activity in mice. Eur Neuropsychopharmacol 10(3):159–164. https://doi.org/10.1016/S0924-977X(00)00070-5
CAS
Article
PubMed
Google Scholar
Hillegaart V, Ahlenius S (1987) Effects of raclopride on exploratory locomotor activity, treadmill locomotion, conditioned avoidance behaviour and catalepsy in rats: behavioural profile comparisons between raclopride, haloperidol and preclamol. Basic Clin Pharmacol Toxicol 60(5):350–354. https://doi.org/10.1111/j.1600-0773.1987.tb01525.x
CAS
Article
Google Scholar
Rhodes J, Garland T (2003) Differential sensitivity to acute administration of Ritalin, apormorphine, SCH 23390, but not raclopride in mice selectively bred for hyperactive wheel-running behavior. Psychopharmacology 167(3):242–250. https://doi.org/10.1007/s00213-003-1399-9
CAS
Article
PubMed
Google Scholar
Hoffman DC, Beninger RJ (1985) The D1 dopamine receptor antagonist, SCH 23390 reduces locomotor activity and rearing in rats. Pharmacol Biochem Behav 22(2):341–342. https://doi.org/10.1016/0091-3057(85)90401-0
CAS
Article
PubMed
Google Scholar
Knab A, Bowen R, Hamilton A, Lightfoot J (2012) Pharmacological manipulation of the dopaminergic system affects wheel-running activity in differentially active mice. J Biol Regul Homeost Agents 26(1):119. https://doi.org/10.14254/2071-8330.2014/7-3/12
CAS
Article
PubMed
PubMed Central
Google Scholar
Fisher BE, Petzinger GM, Nixon K, Hogg E, Bremmer S, Meshul CK, Jakowec MW (2004) Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-lesioned mouse basal ganglia. J Neurosci Res 77(3):378–390. https://doi.org/10.1002/jnr.20162
CAS
Article
PubMed
Google Scholar
Petzinger GM, Walsh JP, Akopian G, Hogg E, Abernathy A, Arevalo P, Turnquist P, Vučković M et al (2007) Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J Neurosci 27(20):5291–5300. https://doi.org/10.1523/JNEUROSCI.1069-07.2007
CAS
Article
PubMed
PubMed Central
Google Scholar
Petzinger GM, Holschneider D, Fisher B, McEwen S, Kintz N, Halliday M, Toy W, Walsh J et al (2015) The effects of exercise on dopamine neurotransmission in Parkinson’s disease: targeting neuroplasticity to modulate basal ganglia circuitry. Brain plasticity 1(1):29–39. https://doi.org/10.3233/bpl-150021
CAS
Article
PubMed
PubMed Central
Google Scholar
Beeler JA, Cao ZFH, Kheirbek MA, Ding Y, Koranda J, Murakami M, Kang UJ, Zhuang X (2010) Dopamine-dependent motor learning: insight into levodopa’s long-duration response. Ann Neurol 67(5):639–647. https://doi.org/10.1002/ana.21947
CAS
Article
PubMed
PubMed Central
Google Scholar
Rabelo P, Almeida T, Guimaraes J, Barcellos L, Cordeiro L, Moraes M, Coimbra C, Szawka R et al (2015) Intrinsic exercise capacity is related to differential monoaminergic activity in the rat forebrain. Brain Res Bull 112:7–13. https://doi.org/10.1016/j.brainresbull.2015.01.006
CAS
Article
PubMed
Google Scholar
Cordeiro L, Rabelo P, Moraes M, Teixeira-Coelho F, Coimbra C, Wanner SP, Soares DD (2017) Physical exercise-induced fatigue: the role of serotonergic and dopaminergic systems. Braz J Med Biol Res 50(12):e6432. https://doi.org/10.1590/1414-431X20176432
CAS
Article
PubMed
PubMed Central
Google Scholar
Balthazar CH, Leite LH, Ribeiro RM, Soares DD, Coimbra CC (2010) Effects of blockade of central dopamine D1 and D 2 receptors on thermoregulation, metabolic rate and running performance. Pharmacol Rep 62(1):54–61. https://doi.org/10.1016/s1734-1140(10)70242-5
CAS
Article
PubMed
Google Scholar
Toval A, Baños R, De la Cruz E, Morales-Delgado N, Pallares JG, Ayad A, Tseng KY, Ferran JL (2017) Habituation training improves locomotor performance in a forced running wheel system in rats. Front Behav Neurosci 11:42. https://doi.org/10.3389/fnbeh.2017.00042
Article
PubMed
PubMed Central
Google Scholar
Toval A, Vicente-Conesa F, Martínez-Ortega P, Kutsenko Y, Morales-Delgado N, Garrigos D, Alonso A, Do Couto BR et al (2020) Hypothalamic Crh/Avp, plasmatic glucose and lactate remain unchanged during habituation to forced exercise. Front Physiol 11. https://doi.org/10.3389/fphys.2020.00410
Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466. https://doi.org/10.1146/annurev-neuro-061010-113641
CAS
Article
PubMed
PubMed Central
Google Scholar
Jayasinghe VR, Flores-Barrera E, West AR, Tseng KY (2017) Frequency-dependent corticostriatal disinhibition resulting from chronic dopamine depletion: role of local striatal cGMP and GABA-AR signaling. Cereb Cortex 27(1):625–634. https://doi.org/10.1093/cercor/bhv241
Article
PubMed
Google Scholar
Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier
Popović N, Giménez de Béjar V, Caballero-Bleda M, Popović M (2017) Verapamil parameter-and dose-dependently impairs memory consolidation in open field habituation task in rats. Front Pharmacol 7:539. https://doi.org/10.3389/fphar.2016.00539
CAS
Article
PubMed
PubMed Central
Google Scholar
Kreitzer AC, Malenka RC (2008) Striatal plasticity and basal ganglia circuit function. Neuron 60(4):543–554. https://doi.org/10.1016/j.neuron.2008.11.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Shapovalova K, Kamkina YV (2008) Motor and cognitive functions of the neostriatum during bilateral blockade of its dopamine receptors. Neurosci Behav Physiol 38(1):71–79. https://doi.org/10.1007/s11055-008-0010-6
CAS
Article
PubMed
Google Scholar
Pandey P, Mersha MD, Dhillon HS (2013) A synergistic approach towards understanding the functional significance of dopamine receptor interactions. J Mol Signal 8(1):13. https://doi.org/10.1186/1750-2187-8-13
CAS
Article
PubMed
PubMed Central
Google Scholar
Waszczak BL, Martin LP, Finlay HE, Zahr N, Stellar JR (2002) Effects of individual and concurrent stimulation of striatal D1 and D2 dopamine receptors on electrophysiological and behavioral output from rat basal ganglia. J Pharmacol Exp Ther 300(3):850–861. https://doi.org/10.1124/jpet.300.3.850
CAS
Article
PubMed
Google Scholar
Nolan EB, Harrison LM, Lahoste GJ, Ruskin DN (2007) Behavioral synergism between D1 and D2 dopamine receptors in mice does not depend on gap junctions. Synapse 61(5):279–287. https://doi.org/10.1002/syn.20371
CAS
Article
PubMed
Google Scholar
Bourne JA (2001) SCH 23390: the first selective dopamine D1-like receptor antagonist. CNS drug reviews 7(4):399–414. https://doi.org/10.1111/j.1527-3458.2001.tb00207.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Rhodes JS, Gammie SC, Garland T Jr (2005) Neurobiology of mice selected for high voluntary wheel-running activity. Integr Comp Biol 45(3):438–455. https://doi.org/10.1093/icb/45.3.438
Article
PubMed
Google Scholar
Christensen A, Arnt J, Hyttel J, Larsen J-J, Svendsen O (1984) Pharmacological effects of a specific dopamine D-1 antagonist SCH 23390 in comparison with neuroleptics. Life Sci 34(16):1529–1540. https://doi.org/10.1016/0024-3205(84)90607-6
CAS
Article
PubMed
Google Scholar
Ågmo A, Soria P (1999) The duration of the effects of a single administration of dopamine antagonists on ambulatory activity and motor coordination. J Neural Transm 106(3–4):219–227. https://doi.org/10.1007/s007020050152
Article
PubMed
Google Scholar
Protais P, Chagraoui A, Arbaoui J, Mocaër E (1994) Dopamine receptor antagonist properties of S 14506, 8-OH-DPAT, raclopride and clozapine in rodents. Eur J Pharmacol 271(1):167–177. https://doi.org/10.1016/0014-2999(94)90277-1
CAS
Article
PubMed
Google Scholar
Klaus A, Alves da Silva J, Costa RM (2019) What, if, and when to move: basal ganglia circuits and self-paced action initiation. Annu Rev Neurosci 42:459–483. https://doi.org/10.1146/annurev-neuro-072116-031033
CAS
Article
PubMed
Google Scholar
Beninger RJ, Miller R (1998) Dopamine D1-like receptors and reward-related incentive learning. Neurosci Biobehav Rev 22(2):335–345. https://doi.org/10.1016/S0149-7634(97)00019-5
CAS
Article
PubMed
Google Scholar
Kabai P, Stewart MG, Tarcali J, Csillag A (2004) Inhibiting effect of D1, but not D2 antagonist administered to the striatum on retention of passive avoidance in the chick. Neurobiol Learn Mem 81(2):155–158. https://doi.org/10.1016/j.nlm.2003.12.002
CAS
Article
PubMed
Google Scholar
Domenger D, Schwarting RK (2006) The serial reaction time task in the rat: effects of D1 and D2 dopamine-receptor antagonists. Behav Brain Res 175(2):212–222. https://doi.org/10.1016/j.bbr.2006.08.027
CAS
Article
PubMed
Google Scholar
Liste I, Guerra M, Caruncho H, Labandeira-Garcia J (1997) Treadmill running induces striatal Fos expression via NMDA glutamate and dopamine receptors. Exp Brain Res 115(3):458–469. https://doi.org/10.1007/pl00005715
CAS
Article
PubMed
Google Scholar
Nakamura T, Rios LC, Yagi T, Sasaoka T, Kitsukawa T (2019) Dopamine D1 and muscarinic acetylcholine receptors in dorsal striatum are required for high speed running. Neurosci Res 156:50–57. https://doi.org/10.1016/j.neures.2019.12.001
CAS
Article
PubMed
Google Scholar
Avila-Luna A, Gálvez-Rosas A, Durand-Rivera A, Ramos-Languren L-E, Ríos C, Arias-Montaño J-A, Bueno-Nava A (2018) Dopamine D 1 receptor activation maintains motor coordination and balance in rats. Metab Brain Dis 33(1):99–105. https://doi.org/10.1007/s11011-017-0126-x
CAS
Article
PubMed
Google Scholar
Steiner H, Kitai ST (2000) Regulation of rat cortex function by D1 dopamine receptors in the striatum. J Neurosci 20(14):5449–5460. https://doi.org/10.1523/JNEUROSCI.20-14-05449.2000
CAS
Article
PubMed
PubMed Central
Google Scholar
Centonze D, Grande C, Saulle E, Martín AB, Gubellini P, Pavón N, Pisani A, Bernardi G et al (2003) Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J Neurosci 23(24):8506–8512. https://doi.org/10.1523/JNEUROSCI.23-24-08506.2003
CAS
Article
PubMed
PubMed Central
Google Scholar
Huang Y-Y, Simpson E, Kellendonk C, Kandel ER (2004) Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors. Proc Natl Acad Sci 101(9):3236–3241. https://doi.org/10.1073/pnas.0308280101
CAS
Article
PubMed
Google Scholar
Calabresi P, Gubellini P, Centonze D, Picconi B, Bernardi G, Chergui K, Svenningsson P, Fienberg AA et al (2000) Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. J Neurosci 20(22):8443–8451. https://doi.org/10.1523/JNEUROSCI.20-22-08443.2000
CAS
Article
PubMed
PubMed Central
Google Scholar
Tseng KY, Snyder-Keller A, O’Donnell P (2007) Dopaminergic modulation of striatal plateau depolarizations in corticostriatal organotypic cocultures. Psychopharmacology 191(3):627–640. https://doi.org/10.1007/s00213-006-0439-7 Free PMC article
CAS
Article
PubMed
Google Scholar
Oswald MJ, Schulz JM, Kelsch W, Oorschot DE, Reynolds JN (2015) Potentiation of NMDA receptor-mediated transmission in striatal cholinergic interneurons. Front Cell Neurosci 9:116. https://doi.org/10.3389/fncel.2015.00116
CAS
Article
PubMed
PubMed Central
Google Scholar
Villar FDS, Walsh J (1999) Modulation of long-term synaptic plasticity at excitatory striatal synapses. Neuroscience 90(3):1031–1041. https://doi.org/10.1016/s0306-4522(98)00504-1
Article
Google Scholar
Farrar AM, Segovia KN, Randall PA, Nunes EJ, Collins LE, Stopper CM, Port RG, Hockemeyer J et al (2010) Nucleus accumbens and effort-related functions: behavioral and neural markers of the interactions between adenosine A2A and dopamine D2 receptors. Neuroscience 166(4):1056–1067. https://doi.org/10.1016/j.neuroscience.2009.12.056
CAS
Article
PubMed
Google Scholar
Tseng KY, O'Donnell P (2007) D2 dopamine receptors recruit a GABA component for their attenuation of excitatory synaptic transmission in the adult rat prefrontal cortex. Synapse 61(10):843–850. https://doi.org/10.1002/syn.20432
CAS
Article
PubMed
PubMed Central
Google Scholar
Santana N, Mengod G, Artigas F (2009) Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 19(4):849–860. https://doi.org/10.1093/cercor/bhn134
Article
PubMed
Google Scholar
Del Arco A, Mora F, Mohammed A, Fuxe K (2007) Stimulation of D2 receptors in the prefrontal cortex reduces PCP-induced hyperactivity, acetylcholine release and dopamine metabolism in the nucleus accumbens. J Neural Transm 114(2):185–193. https://doi.org/10.1007/s00702-006-0533-3
CAS
Article
PubMed
Google Scholar
Molina-Luna K, Pekanovic A, Röhrich S, Hertler B, Schubring-Giese M, Rioult-Pedotti M-S, Luft AR (2009) Dopamine in motor cortex is necessary for skill learning and synaptic plasticity. PLoS One 4(9):e7082. https://doi.org/10.1371/journal.pone.0007082
CAS
Article
PubMed
PubMed Central
Google Scholar
Hosp J, Molina-Luna K, Hertler B, Atiemo CO, Luft A (2009) Dopaminergic modulation of motor maps in rat motor cortex: an in vivo study. Neuroscience 159(2):692–700. https://doi.org/10.1016/j.neuroscience.2008.12.056
CAS
Article
PubMed
Google Scholar
Vitrac C, Péron S, Frappé I, Fernagut P-O, Jaber M, Gaillard A, Benoit-Marand M (2014) Dopamine control of pyramidal neuron activity in the primary motor cortex via D2 receptors. Frontiers in Neural Circuits 8:13. https://doi.org/10.3389/fncir.2014.00013
CAS
Article
PubMed
PubMed Central
Google Scholar
Bello E, Casas-Cordero R, Galiñanes GL, Casey E, Belluscio MA, Rodríguez V, Noaín D, Murer MG et al (2017) Inducible ablation of dopamine D2 receptors in adult mice impairs locomotion, motor skill learning and leads to severe parkinsonism. Mol Psychiatry 22(4):595–604. https://doi.org/10.1038/mp.2016.105
CAS
Article
PubMed
Google Scholar
Clifford JJ, Kinsella A, Tighe O, Rubinstein M, Grandy DK, Low MJ, Croke DT, Waddington JL (2001) Comparative, topographically-based evaluation of behavioural phenotype and specification of D1-like: D2 interactions in a line of incipient congenic mice with D2 dopamine receptor ‘knockout’. Neuropsychopharmacology 25(4):527–536. https://doi.org/10.1016/S0893-133X(01)00246-9
CAS
Article
PubMed
Google Scholar
Kelly MA, Rubinstein M, Phillips TJ, Lessov CN, Burkhart-Kasch S, Zhang G, Bunzow JR, Fang Y et al (1998) Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J Neurosci 18(9):3470–3479. https://doi.org/10.1523/JNEUROSCI.18-09-03470.1998
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang J, Goodlett DR (2004) Proteomic approach to studying Parkinson’s disease. Mol Neurobiol 29(3):271–288. https://doi.org/10.1385/MN:29:3:271
CAS
Article
PubMed
Google Scholar
Smith AD, Zigmond MJ (2003) Can the brain be protected through exercise? Lessons from an animal model of parkinsonism. Exp Neurol 184(1):31–39. https://doi.org/10.1016/j.expneurol.2003.08.017
CAS
Article
PubMed
Google Scholar
Dagher A, Robbins TW (2009) Personality, addiction, dopamine: insights from Parkinson’s disease. Neuron 61(4):502–510. https://doi.org/10.1016/j.neuron.2009.01.031
CAS
Article
PubMed
Google Scholar
Aoyama S, Kase H, Borrelli E (2000) Rescue of locomotor impairment in dopamine D2 receptor-deficient mice by an adenosine A2A receptor antagonist. J Neurosci 20(15):5848–5852. https://doi.org/10.1523/JNEUROSCI.20-15-05848.2000
CAS
Article
PubMed
PubMed Central
Google Scholar
Baik J-H, Picetti R, Saiardi A, Thiriet G, Dierich A, Depaulis A, Le Meur M, Borrelli E (1995) Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377(6548):424–428. https://doi.org/10.1038/377424a0
CAS
Article
PubMed
Google Scholar
Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF (2007) Brain neurotransmitters in fatigue and overtraining. Appl Physiol Nutr Metab 32(5):857–864
CAS
Article
Google Scholar
Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76(3):470–485
CAS
Article
Google Scholar
Salamone JD, Correa M, Ferrigno S, Yang J-H, Rotolo RA, Presby RE (2018) The psychopharmacology of effort-related decision making: dopamine, adenosine, and insights into the neurochemistry of motivation. Pharmacol Rev 70(4):747–762. https://doi.org/10.1124/pr.117.015107
CAS
Article
PubMed
PubMed Central
Google Scholar
de la Crompe B, Aristieta A, Leblois A, Elsherbiny S, Boraud T, Mallet NP (2020) The globus pallidus orchestrates abnormal network dynamics in a model of parkinsonism. Nat Commun 11(1):1–14. https://doi.org/10.1038/s41467-020-15352-3
CAS
Article
Google Scholar
Fuster JM (2001) The prefrontal cortex—an update: time is of the essence. Neuron 30(2):319–333
CAS
Article
Google Scholar