Skip to main content
Log in

Dopaminergic modulation of striatal plateau depolarizations in corticostriatal organotypic cocultures

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

It has been proposed that dopamine (DA) sustains up states in striatal medium spiny neurons (MSN). Testing this hypothesis requires an in vitro preparation, but up states are typically only observed in vivo.

Objectives

In this study, we used corticostriatal organotypic cocultures, a preparation in which up states have been previously observed, to test the DA control of cortically-driven plateau depolarizations.

Results

After 7–21 days in vitro in serum-free conditions, plateau depolarizations resembling up states were only observed in cultures with a critical extent of striatal DA innervation. These plateaus were completely blocked by the non-NMDA antagonist CNQX and significantly shortened by the NMDA antagonist APV or the D1 antagonist SCH23390. Intracellular interruption of Ca++ or protein-kinase A (PKA) signaling also eliminated the plateaus. The D2 antagonist eticlopride failed to disrupt the plateaus, but significantly increased MSN excitability.

Conclusions

These results suggest that coincident activation of corticostriatal glutamatergic and mesostriatal DA transmission may set ensembles of MSN into prolonged depolarizations through a D1 enhancement of striatal NMDA function in a Ca++ and PKA-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Cepeda C, Levine MS (1998) Dopamine and N-methyl-D-aspartate receptor interactions in the neostriatum. Dev Neurosci 20:1–18

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C, Buchwald NA, Levine MS (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci USA 90:9576–9580

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C, Colwell CS, Itri JN, Chandler SH, Levine MS (1998) Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. J Neurophysiol 79:82–94

    PubMed  CAS  Google Scholar 

  • DeFrance JF, Marchand JF, Sikes RW, Chronister RB, Hubbard JI (1985) Characterization of fimbria input to nucleus accumbens. J Neurophysiol 54:1553–1567

    PubMed  CAS  Google Scholar 

  • Dunah AW, Standaert DG (2001) Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 21:5546–5558

    PubMed  CAS  Google Scholar 

  • Edin ML, Howe AK, Juliano RL (2001) Inhibition of PKA blocks fibroblast migration in response to growth factors. Exp Cell Res 270:214–222

    Article  PubMed  CAS  Google Scholar 

  • Gonon F (1997) Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J Neurosci 17:5972–5978

    PubMed  CAS  Google Scholar 

  • Goto Y, O’Donnell P (2001a) Network synchrony in the nucleus accumbens in vivo. J Neurosci 21:4498–4504

    PubMed  CAS  Google Scholar 

  • Goto Y, O’Donnell P (2001b) Synchronous activity in the hippocampus and nucleus accumbens in vivo. J Neurosci 21:RC131

    PubMed  CAS  Google Scholar 

  • Hernandez-Lopez S, Bargas J, Surmeier DJ, Reyes A, Galarraga E (1997) D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J Neurosci 17:3334–3342

    PubMed  CAS  Google Scholar 

  • Kerr JN, Plenz D (2002) Dendritic calcium encodes striatal neuron output during up-states. J Neurosci 22:1499–1512

    PubMed  CAS  Google Scholar 

  • Lewis BL, O’Donnell P (2000) Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential ‘up’ states in pyramidal neurons via D1 dopamine receptors. Cereb Cortex 10:1168–1175

    Article  PubMed  CAS  Google Scholar 

  • Mahon S, Deniau JM, Charpier S (2001) Relationship between EEG potentials and intracellular activity of striatal and cortico-striatal neurons: an in vivo study under different anesthetics. Cereb Cortex 11:360–373

    Article  PubMed  CAS  Google Scholar 

  • Nicola S, Surmeier J, Malenka RC (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 23:185–215

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell P (2003) Dopamine gating of forebrain neural ensembles. Eur J Neurosci 17:429–435

    Article  PubMed  Google Scholar 

  • O’Donnell P, Grace AA (1995) Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J Neurosci 15:3622–3639

    PubMed  CAS  Google Scholar 

  • O’Donnell P, Grace AA (1996) Dopaminergic reduction of excitability in nucleus accumbens neurons recorded in vitro. Neuropsychopharmacology 15:87–97

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell P, Greene J, Pabello N, Lewis BL, Grace AA (1999) Modulation of cell firing in the nucleus accumbens. Ann NY Acad Sci 877:157–175

    Article  PubMed  CAS  Google Scholar 

  • Petersen CCH, Hahn TTG, Mehta M, Grinvald A, Sakmann B (2003) Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. PNAS 100:13643–13683

    Google Scholar 

  • Plenz D, Kitai ST (1998) Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex–striatum–substantia nigra organotypic cultures. J Neurosci 18:266–283

    PubMed  CAS  Google Scholar 

  • Reynolds JN, Wickens JR (2000) Substantia nigra dopamine regulates synaptic plasticity and membrane potential fluctuations in the rat neostriatum, in vivo. Neuroscience 99:199–203

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    Article  PubMed  CAS  Google Scholar 

  • Snyder PM, Olson DR, Kabra R, Zhou R, Steines JC (2004) cAMP and serum and glucocorticoid-inducible kinase (SGK) regulate the epithelial Na+ channel through convergent phosphorylation of Nedd4-2. J Biol Chem 279:45753–45758

    Article  PubMed  CAS  Google Scholar 

  • Snyder-Keller A (2004) Pattern of corticostriatal innervation in organotypic cocultures is dependent on the age of the cortical tissue. Exp Neurol 185:262–271

    Article  PubMed  Google Scholar 

  • Snyder-Keller A, Costantini LC, Graber DJ (2001) Development of striatal patch/matrix organization in organotypic co-cultures of perinatal striatum, cortex and substantia nigra. Neuroscience 103:97–109

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Nunez A, Amzica F (1993) Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13:3266–3283

    PubMed  CAS  Google Scholar 

  • Surmeier DJ, Bargas J, Hemmings HC, Nairn AC, Greengard P (1995) Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14:385–397

    Article  PubMed  CAS  Google Scholar 

  • Tseng KY, Kasanetz F, Kargieman L, Riquelme LA, Murer MG (2001) Cortical slow oscillatory activity is reflected in the membrane potential and spike trains of striatal neurons in rats with chronic nigrostriatal lesions. J Neurosci 21:6430–6439

    PubMed  CAS  Google Scholar 

  • Tseng KY, O’Donnell P (2004) Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 24:5131–5139

    Article  PubMed  CAS  Google Scholar 

  • Tseng KY, O’Donnell P (2005) Post-pubertal emergence of prefrontal cortical up states induced by D1–NMDA co-activation. Cereb Cortex 15:49–57

    Article  PubMed  Google Scholar 

  • Vergara R, Rick C, Hernandez-Lopez S, Laville J A, Guzman JN, Galarraga E, Surmeier DJ, Bargas J (2003) Spontaneous voltage oscillations in striatal projection neurons in a rat corticostriatal slice. J Physiol 553:169–182

    Article  PubMed  CAS  Google Scholar 

  • Wang J, O’Donnell P (2001) D1 dopamine receptors potentiate NMDA-mediated excitability increase in layer V prefrontal cortical pyramidal neurons. Cereb Cortex 11:452–462

    Article  PubMed  CAS  Google Scholar 

  • West AR, Grace AA (2002) Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J Neurosci 22:294–304

    PubMed  CAS  Google Scholar 

  • Wilson CJ (1993) The generation of natural firing patterns in neostriatal neurons. Prog Brain Res 99:277–297

    Article  PubMed  CAS  Google Scholar 

  • Wolf JA, Moyer JT, Lazarewicz MT, Contreras D, Benoit-Marand M, O’Donnell P, Finkel LH (2005) NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. J Neurosci 25:9080–9095

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. Gregory Lyng for preparing some of the organotypic cocultures used in the present study. This research was supported by the Tourette Syndrome Association (ASK), USPHS grants MH57683 (PO’D), MH60131 (PO’D) and a NARSAD Independent Investigator Award (PO’D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio O’Donnell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, K.Y., Snyder-Keller, A. & O’Donnell, P. Dopaminergic modulation of striatal plateau depolarizations in corticostriatal organotypic cocultures. Psychopharmacology 191, 627–640 (2007). https://doi.org/10.1007/s00213-006-0439-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0439-7

Keywords

Navigation