Skip to main content
Log in

Duration- and sex-dependent neural circuit control of voluntary physical activity

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Exercise participation remains low despite clear benefits. Rats engage in voluntary wheel running (VWR) that follows distinct phases of acquisition, during which VWR escalates, and maintenance, during which VWR remains stable. Understanding mechanisms driving acquisition and maintenance of VWR could lead to novel strategies to promote exercise. The two phases of VWR resemble those that occur during operant conditioning and, therefore, might involve similar neural substrates. The dorsomedial (DMS) dorsal striatum (DS) supports the acquisition of operant conditioning, whereas the dorsolateral striatum (DLS) supports its maintenance.

Objectives

Here we sought to characterize the roles of DS subregions in VWR. Females escalate VWR and operant conditioning faster than males. Thus, we also assessed for sex differences.

Methods

To determine the causal role of DS subregions in VWR, we pharmacologically inactivated the DMS or DLS of adult, male and female, Long-Evans rats during the two phases of VWR. The involvement of DA receptor 1 (D1)–expressing neurons in the DS was investigated by quantifying cfos mRNA within this neuronal population.

Results

We observed that, in males, the DMS and DLS are critical for VWR exclusively during acquisition and maintenance, respectively. In females, the DMS is also critical only during acquisition, but the DLS contributes to VWR during both VWR phases. DLS D1 neurons could be an important driver of VWR escalation during acquisition.

Conclusions

The acquisition and maintenance of VWR involve unique neural substrates in the DS that vary by sex. Results reveal targets for sex-specific strategies to promote exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed SH, Koob GF (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science 282:298–300

    Article  CAS  PubMed  Google Scholar 

  • Anantharaman-Barr HG, Decombaz J (1989) The effect of wheel running and the estrous cycle on energy expenditure in female rats. Physiol Behav 46:259–263

    Article  CAS  PubMed  Google Scholar 

  • Balleine BW, Delgado MR, Hikosaka O (2007) The role of the dorsal striatum in reward and decision-making. J Neurosci 27:8161–8165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basso JC, Morrell JI (2015) The medial prefrontal cortex and nucleus accumbens mediate the motivation for voluntary wheel running in the rat. Behav Neurosci 129:457–472

    Article  PubMed  Google Scholar 

  • Basso JC, Morrell JI (2017) Using wheel availability to shape running behavior of the rat towards improved behavioral and neurobiological outcomes. J Neurosci Methods 290:13–23

    Article  PubMed  Google Scholar 

  • Bauer EE, Buhr TJ, Reed CH, Clark PJ (2020) Exercise-induced adaptations to the mouse striatal adenosine system. Neural Plast 2020:5859098

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker JB (1999) Gender differences in dopaminergic function in striatum and nucleus accumbens. Pharmacol Biochem Behav 64:803–812

    Article  CAS  PubMed  Google Scholar 

  • Beeler JA, Faust RP, Turkson S, Ye H, Zhuang X (2016) Low dopamine D2 receptor increases vulnerability to obesity via reduced physical activity, not increased appetitive motivation. Biol Psychiatry 79:887–897

    Article  CAS  PubMed  Google Scholar 

  • Belke TW, Wagner JP (2005) The reinforcing property and the rewarding aftereffect of wheel running in rats: a combination of two paradigms. Behav Processes 68:165–172

    Article  PubMed  Google Scholar 

  • Beshears J, Lee HN, Milkman KL, Mislavsky R, Wisdom J (2021) Creating exercise habits using incentives: the tradeoff between flexibility and routinization. Manage Sci 67:3985–4642

    PubMed  Google Scholar 

  • Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG (2017) Role of inactivity in chronic diseases: evolutionary insight and pathophysiological mechanisms. Physiol Rev 97:1351–1402

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouchet CA, Lloyd BA, Loetz EC, Farmer CE, Ostrovskyy M et al (2017) Acute exercise enhances the consolidation of fear extinction memory and reduces conditioned fear relapse in a sex-dependent manner. Learn Mem 24:358–368

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouchet CA, Miner MA, Loetz EC, Rosberg AJ, Hake HS et al (2018) Activation of nigrostriatal dopamine neurons during fear extinction prevents the renewal of fear. Neuropsychopharmacology 43:665–672

    Article  CAS  PubMed  Google Scholar 

  • Breslau N (2009) The epidemiology of trauma, PTSD, and other posttrauma disorders. Trauma Violence Abuse 10:198–210

    Article  PubMed  Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T (1957) 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180:1200

    Article  CAS  PubMed  Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T, Waldeck B (1958) On the presence of 3-hydroxytyramine in brain. Science 127:471

    Article  CAS  PubMed  Google Scholar 

  • Corbit LH, Nie H, Janak PH (2012) Habitual alcohol seeking: time course and the contribution of subregions of the dorsal striatum. Biol Psychiatry 72:389–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebada ME, Kendall DA, Pardon MC (2016) Corticosterone and dopamine D2/D3 receptors mediate the motivation for voluntary wheel running in C57BL/6J mice. Behav Brain Res 311:228–238

    Article  CAS  PubMed  Google Scholar 

  • Eckel LA, Houpt TA, Geary N (2000) Spontaneous meal patterns in female rats with and without access to running wheels. Physiol Behav 70:397–405

    Article  CAS  PubMed  Google Scholar 

  • Eikelboom R, Mills R (1988) A microanalysis of wheel running in male and female rats. Physiol Behav 43:625–630

    Article  CAS  PubMed  Google Scholar 

  • Faure A, Haberland U, Conde F, El Massioui N (2005) Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. J Neurosci 25:2771–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foley TE, Fleshner M (2008) Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. Neuromolecular Med 10:67–80

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN et al (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  CAS  PubMed  Google Scholar 

  • Goodman J, Leong KC, Packard MG (2015) Glucocorticoid enhancement of dorsolateral striatum-dependent habit memory requires concurrent noradrenergic activity. Neuroscience 311:1–8

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Grace AA (2005) Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat Neurosci 8:805–812

    Article  CAS  PubMed  Google Scholar 

  • Grace AA, Floresco SB, Goto Y, Lodge DJ (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30:220–227

    Article  CAS  PubMed  Google Scholar 

  • Graveland GA, DiFiglia M (1985) The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum. Brain Res 327:307–311

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM, Grafton ST (2015) The striatum: where skills and habits meet. Cold Spring Harb Perspect Biol 7:a021691

    Article  PubMed  PubMed Central  Google Scholar 

  • Graybiel AM, Aosaki T, Flaherty AW, Kimura M (1994) The basal ganglia and adaptive motor control. Science 265:1826–1831

    Article  CAS  PubMed  Google Scholar 

  • Greenwood BN (2019) The role of dopamine in overcoming aversion with exercise. Brain Res 1713:102–108

    Article  CAS  PubMed  Google Scholar 

  • Greenwood BN, Fleshner M (2019) Voluntary wheel running: a useful rodent model for investigating mechanisms of stress robustness and exercise motivation. Curr Opin Behav Sci 28:78–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge AB et al (2011) Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behav Brain Res 217:354–362

    Article  PubMed  Google Scholar 

  • Guenzel FM, Wolf OT, Schwabe L (2014) Glucocorticoids boost stimulus-response memory formation in humans. Psychoneuroendocrinology 45:21–30

    Article  CAS  PubMed  Google Scholar 

  • Hastings MH, Herrera JJ, Guseh JS, Atlason B, Houstis NE et al (2022) Animal models of exercise from rodents to pythons. Circ Res 130:1994–2014

    Article  CAS  PubMed  Google Scholar 

  • Herrera JJ, Fedynska S, Ghasem PR, Wieman T, Clark PJ et al (2016) Neurochemical and behavioural indices of exercise reward are independent of exercise controllability. Eur J Neurosci 43:1190–1202

    Article  PubMed  PubMed Central  Google Scholar 

  • Hilario M, Holloway T, Jin X, Costa RM (2012) Different dorsal striatum circuits mediate action discrimination and action generalization. Eur J Neurosci 35:1105–1114

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaushal N, Rhodes RE (2015) Exercise habit formation in new gym members: a longitudinal study. J Behav Med 38:652–663

    Article  PubMed  Google Scholar 

  • Klinker F, Hasan K, Paulus W, Nitsche MA, Liebetanz D (2013) Pharmacological blockade and genetic absence of the dopamine D2 receptor specifically modulate voluntary locomotor activity in mice. Behav Brain Res 242:117–124

    Article  CAS  PubMed  Google Scholar 

  • Knab AM, Lightfoot JT (2010) Does the difference between physically active and couch potato lie in the dopamine system? Int J Biol Sci 6:133–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowlton BJ, Mangels JA, Squire LR (1996) A neostriatal habit learning system in humans. Science 273:1399–1402

    Article  CAS  PubMed  Google Scholar 

  • Kravitz AV, Kreitzer AC (2012) Striatal mechanisms underlying movement, reinforcement, and punishment. Physiology 27:167–177

    Article  PubMed  Google Scholar 

  • Kreitzer AC (2009) Physiology and pharmacology of striatal neurons. Annu Rev Neurosci 32:127–147

    Article  CAS  PubMed  Google Scholar 

  • Lattanzio SB, Eikelboom R (2003) Wheel access duration in rats: I. Effects on feeding and running. Behav Neurosci 117:496–504

    Article  PubMed  Google Scholar 

  • Lett BT, Grant VL, Byrne MJ, Koh MT (2000) Pairings of a distinctive chamber with the aftereffect of wheel running produce conditioned place preference. Appetite 34:87–94

    Article  CAS  PubMed  Google Scholar 

  • Maier SF, Silbert LH, Woodmansee WW, Desan PH (1990) Adinazolam both prevents and reverses the long-term reduction of daily activity produced by inescapable shock. Pharmacol Biochem Behav 36:767–773

    Article  CAS  PubMed  Google Scholar 

  • Malvaez M, Wassum KM (2018) Regulation of habit formation in the dorsal striatum. Curr Opin Behav Sci 20:67–74

    Article  PubMed  Google Scholar 

  • Mika A, Bouchet CA, Bunker P, Hellwinkel JE, Spence KG et al (2015) Voluntary exercise during extinction of auditory fear conditioning reduces the relapse of fear associated with potentiated activity of striatal direct pathway neurons. Neurobiol Learn Mem 125:224–235

    Article  PubMed  PubMed Central  Google Scholar 

  • Moraska A, Fleshner M (2001) Voluntary physical activity prevents stress-induced behavioral depression and anti-KLH antibody suppression. Am J Physiol Regul Integr Comp Physiol 281:R484–R489

    Article  CAS  PubMed  Google Scholar 

  • Novak CM, Burghardt PR, Levine JA (2012) The use of a running wheel to measure activity in rodents: relationship to energy balance, general activity, and reward. Neurosci Biobehav Rev 36:1001–1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (1998) The Rat Brain in Stereotaxic Coordinates. Academic Press, New York

    Google Scholar 

  • Pfeffer I, Strobach T (2018) Behavioural automaticity moderates and mediates the relationship of trait self-control and physical activity behaviour. Psychol Health 33:925–940

    Article  PubMed  Google Scholar 

  • Quinn JJ, Hitchcott PK, Umeda EA, Arnold AP, Taylor JR (2007) Sex chromosome complement regulates habit formation. Nat Neurosci 10:1398–1400

    Article  CAS  PubMed  Google Scholar 

  • Rhodes JS, Gammie SC, Garland T Jr (2005) Neurobiology of mice selected for high voluntary wheel-running activity. Integr Comp Biol 45:438–455

    Article  PubMed  Google Scholar 

  • Roberts MD, Gilpin L, Parker KE, Childs TE, Will MJ, Booth FW (2012) Dopamine D1 receptor modulation in nucleus accumbens lowers voluntary wheel running in rats bred to run high distances. Physiol Behav 105:661–668

    Article  CAS  PubMed  Google Scholar 

  • Ruegsegger GN, Booth FW (2018) Health benefits of exercise. Cold Spring Harb Perspect Med 8

  • Ruegsegger GN, Booth FW (2017) Running from disease: molecular mechanisms associating dopamine and leptin signaling in the brain with physical inactivity, Obesity, and Type 2 Diabetes. Front Endocrinol (lausanne) 8:109

    Article  Google Scholar 

  • Ruiz-Tejada A, Neisewander J, Katsanos CS (2022) Regulation of voluntary physical activity behavior: a review of evidence involving dopaminergic pathways in the brain. Brain Sci 12

  • Sackett DA, Saddoris MP, Carelli RM (2017) Nucleus accumbens shell dopamine preferentially tracks information related to outcome value of reward. eNeuro 4

  • Schoenberg HL, Sola EX, Seyller E, Kelberman M, Toufexis DJ (2019) Female rats express habitual behavior earlier in operant training than males. Behav Neurosci 133:110–120

    Article  CAS  PubMed  Google Scholar 

  • Schwabe L, Wolf OT (2011) Stress-induced modulation of instrumental behavior: from goal-directed to habitual control of action. Behav Brain Res 219:321–328

    Article  PubMed  Google Scholar 

  • Sherwin CM (1998) Voluntary wheel running: a review and novel interpretation. Anim Behav 56:11–27

    Article  CAS  PubMed  Google Scholar 

  • Steel Z, Marnane C, Iranpour C, Chey T, Jackson JW et al (2014) The global prevalence of common mental disorders: a systematic review and meta-analysis 1980–2013. Int J Epidemiol 43:476–493

    Article  PubMed  PubMed Central  Google Scholar 

  • Stewart J (2000) Pathways to relapse: the neurobiology of drug- and stress-induced relapse to drug-taking. J Psychiatry Neurosci 25:125–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strobach T, Englert C, .Jekauc D, Pfeffer I (2020) Predicting adoption and maintenance of physical activity in the context of dual-process theories. Perform Enhanc Health 8

  • Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M (2008) Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc 40:181–188

    Article  PubMed  Google Scholar 

  • Trost A, Hauber W (2014) Dopamine D1/D2 receptors do not mediate the expression of conditioned place preference induced by the aftereffect of wheel running. BMC Neurosci 15:124

    Article  PubMed  PubMed Central  Google Scholar 

  • van Elzelingen W, Warnaar P, Matos J, Bastet W, Jonkman R et al (2022) Striatal dopamine signals are region specific and temporally stable across action-sequence habit formation. Curr Biol 32(1163–74):e6

    Google Scholar 

  • Vandaele Y, Mahajan NR, Ottenheimer DJ, Richard JM, Mysore SP, Janak PH (2019) Distinct recruitment of dorsomedial and dorsolateral striatum erodes with extended training. Elife 8

  • Werme M, Messer C, Olson L, Gilden L, Thoren P et al (2002) Delta FosB regulates wheel running. J Neurosci 22:8133–8138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickens JR, Horvitz JC, Costa RM, Killcross S (2007) Dopaminergic mechanisms in actions and habits. J Neurosci 27:8181–8183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wollnik F, Turek FW (1988) Estrous correlated modulations of circadian and ultradian wheel-running activity rhythms in LEW/Ztm rats. Physiol Behav 43:389–396

    Article  CAS  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476

    Article  CAS  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19:181–189

    Article  PubMed  Google Scholar 

  • Yin HH, Ostlund SB, Knowlton BJ, Balleine BW (2005) The role of the dorsomedial striatum in instrumental conditioning. Eur J Neurosci 22:513–523

    Article  PubMed  Google Scholar 

  • Yin HH, Mulcare SP, Hilario MR, Clouse E, Holloway T et al (2009) Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat Neurosci 12:333–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zachry JE, Nolan SO, Brady LJ, Kelly SJ, Siciliano CA, Calipari ES (2021) Sex differences in dopamine release regulation in the striatum. Neuropsychopharmacology 46:491–499

    Article  PubMed  Google Scholar 

  • Zhu X, Ottenheimer D, DiLeone RJ (2016) Activity of D1/2 receptor expressing neurons in the nucleus accumbens regulates running, locomotion, and food intake. Front Behav Neurosci 10:66

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Erik B. Oleson for proofreading the manuscript.

Funding

Funding for these studies was provided by NIH R15MH114026 awarded to BNG.

Author information

Authors and Affiliations

Authors

Contributions

MKT and BNG designed the studies. MKT, JKPD, JJ, NAM, AAH, KB, KAA, NJ, RH, TJH, NB, and ECL contributed to data collection. MKT, JKPD, JJ, and BNG analyzed data. MKT and BNG wrote the manuscript. All authors edited paper drafts.

Corresponding author

Correspondence to Benjamin N. Greenwood.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 205 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanner, M.K., Davis, J.K.P., Jaime, J. et al. Duration- and sex-dependent neural circuit control of voluntary physical activity. Psychopharmacology 239, 3697–3709 (2022). https://doi.org/10.1007/s00213-022-06243-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-022-06243-0

Keywords

Navigation