Skip to main content

Advertisement

Log in

Neuroplasticity of Dopamine Circuits After Exercise: Implications for Central Fatigue

  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Habitual exercise increases plasticity in a variety of neurotransmitter systems. The current review focuses on the effects of habitual physical activity on monoamine dopamine (DA) neurotransmission and the potential implication of these changes to exercise-induced fatigue. Although it is clear that peripheral adaptations in muscle and energy substrate utilization contribute to this effect, more recently it has been suggested that central nervous system pathways “upstream” of the motor cortex, which initiate activation of skeletal muscles, are also important. The contribution of the brain to exercise-induced fatigue has been termed “central fatigue.” Given the well-defined role of DA in the initiation of movement, it is likely that adaptations in DA systems influence exercise capacity. A reduction in DA neurotransmission in the substantia nigra pars compacta (SNpc), for example, could impair activation of the basal ganglia and reduce stimulation of the motor cortex leading to central fatigue. Here we present evidence that habitual wheel running produces changes in DA systems. Using in situ hybridization techniques, we report that 6 weeks of wheel running was sufficient to increase tyrosine hydroxylase mRNA expression and reduce D2 autoreceptor mRNA in the SNpc. Additionally, 6 weeks of wheel running increased D2 postsynaptic receptor mRNA in the caudate putamen, a major projection site of the SNpc. These results are consistent with prior data suggesting that habitually physically active animals may have an enhanced ability to increase DA synthesis and reduce D2 autoreceptor-mediated inhibition of DA neurons in the SNpc compared to sedentary animals. Furthermore, habitually physically active animals, compared to sedentary controls, may be better able to increase D2 receptor-mediated inhibition of the indirect pathway of the basal ganglia. Results from these studies are discussed in light of our understanding of the role of DA in the neurobiological mechanisms of central fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelmalki, A., Merino, D., Bonneau, D., et al. (1997). Administration of a GABAB agonist baclofen before running to exhaustion in the rat: Effects on performance and on some indicators of fatigue. International Journal of Sports Medicine, 18, 75–78.

    PubMed  CAS  Google Scholar 

  • Acworth, I., Nicholass, J., Morgan, B., et al. (1986). Effect of sustained exercise on concentrations of plasma aromatic and branched-chain amino acids and brain amines. Biochemical and Biophysical Research Communications, 137, 149–153.

    PubMed  CAS  Google Scholar 

  • Adell, A., & Artigas, F. (2004). The somatodendritic release of dopamine in the ventral tegmental area and its regulation by afferent transmitter systems. Neuroscience and Biobehavioural Reviews, 28, 415–431.

    CAS  Google Scholar 

  • Agharanya, J. C., & Wurtman, R. J. (1982). Studies on the mechanism by which tyrosine raises urinary catecholamines. Biochemical Pharmacology, 31, 3577–3580.

    PubMed  CAS  Google Scholar 

  • Ahlenius, S., & Hillegaart, V. (1986). Involvement of extrapyramidal motor mechanisms in the suppression of locomotor activity by antipsychotic drugs: A comparison between the effects produced by pre- and post-synaptic inhibition of dopaminergic neurotransmission. Pharmacology, Biochemistry and Behaviour, 24, 1409–1415.

    CAS  Google Scholar 

  • Ahlenius, S., Svensson, L., Hillegaart, V., et al. (1984). Antagonism by haloperidol of the suppression of exploratory locomotor activity induced by the local application of (−)3-(3-hydroxyphenyl)-N-n-propylpiperidine into the nucleus accumbens of the rat. Experientia, 40, 858–859.

    PubMed  CAS  Google Scholar 

  • Altar, C. A., Boylan, C. B., Jackson, C., et al. (1992). Brain-derived neurotrophic factor augments rotational behavior and nigrostriatal dopamine turnover in vivo. Proceedings of National Academy of Sciences USA, 89, 11347–11351.

    CAS  Google Scholar 

  • Avraham, Y., Hao, S., Mendelson, S., et al. (2001). Tyrosine improves appetite, cognition, and exercise tolerance in activity anorexia. Medicine and Science in Sports and Exercise, 33, 2104–2110.

    PubMed  CAS  Google Scholar 

  • Bailey, S. P., Davis, J. M., & Ahlborn, E. N. (1992). Effect of increased brain serotonergic activity on endurance performance in the rat. Acta Physiologica Scandinavica, 145, 75–76.

    PubMed  CAS  Google Scholar 

  • Bailey, S. P., Davis, J. M., & Ahlborn, E. N. (1993a) Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue. Journal of Applied Physiology, 74, 3006–3012.

    PubMed  CAS  Google Scholar 

  • Bailey, S. P., Davis, J. M., & Ahlborn, E. N. (1993b) Serotonergic agonists and antagonists affect endurance performance in the rat. International Journal of Sports and Medicne, 14, 330–333.

    CAS  Google Scholar 

  • Beck, K. D., Knusel, B., & Hefti, F. (1993). The nature of the trophic action of brain-derived neurotrophic factor, des(1–3)-insulin-like growth factor-1, and basic fibroblast growth factor on mesencephalic dopaminergic neurons developing in culture. Neuroscience, 52, 855–866.

    PubMed  CAS  Google Scholar 

  • Belke, T. W. (1997). Running and responding reinforced by the opportunity to run: Effect of reinforcer duration. Journal of Experimental Analysis and Behaviour, 67, 337–351.

    CAS  Google Scholar 

  • Bhagat, B., & Wheeler, N. (1973a) Effect of amphetamine on the swimming endurance of rats. Neuropharmacology, 12, 711–713.

    PubMed  CAS  Google Scholar 

  • Bhagat, B., & Wheeler, N. (1973b) Effect of nicotine on the swimming endurance of rats. Neuropharmacology, 12, 1161–1165.

    PubMed  CAS  Google Scholar 

  • Bliss, E. L., & Ailion, J. (1971). Relationship of stress and activity to brain dopamine and homovanillic acid. Life Science I, 10, 1161–1169 .

    CAS  Google Scholar 

  • Blomstrand, E. (2006). A role for branched-chain amino acids in reducing central fatigue. Journal of Nutrition, 136, 544S–547S.

    PubMed  CAS  Google Scholar 

  • Blomstrand, E., Perrett, D., Parry-Billings, M., et al. (1989). Effect of sustained exercise on plasma amino acid concentrations and on 5-hydroxytryptamine metabolism in six different brain regions in the rat. Acta Physiologica Scandinavica, 136, 473–481.

    PubMed  CAS  Google Scholar 

  • Bracken, M. E., Bracken, D. R., Nelson, A. G., et al. (1988). Effect of cocaine on exercise endurance and glycogen use in rats. Journal of Applied Physiology, 64, 884–887.

    PubMed  CAS  Google Scholar 

  • Bracken, M. E., Bracken, D. R., Winder, W. W., et al. (1989). Effect of various doses of cocaine on endurance capacity in rats. Journal of Applied Physiology, 66, 377–383.

    PubMed  CAS  Google Scholar 

  • Burgess, M. L., Davis, J. M., Borg, T. K., et al. (1991). Intracranial self-stimulation motivates treadmill running in rats. Journal of Applied Physiology, 71, 1593–1597.

    PubMed  CAS  Google Scholar 

  • Campisi, J., Leem, T. H., Greenwood, B. N., et al. (2003). Habitual physical activity facilitates stress-induced HSP72 induction in brain, peripheral, and immune tissues. American Journal of Physiology Regulatory, Integrative Comparative Physiology, 284, R520–R530.

    CAS  Google Scholar 

  • Chaouloff, F., Laude, D., Guezennec, Y., et al. (1986). Motor activity increases tryptophan, 5-hydroxyindoleacetic acid, and homovanillic acid in ventricular cerebrospinal fluid of the conscious rat. Journal of Neurochemistry, 46, 1313–1316.

    PubMed  CAS  Google Scholar 

  • Chaouloff, F., Laude, D., Merino, D., et al. (1987). Amphetamine and alpha-methyl-p-tyrosine affect the exercise-induced imbalance between the availability of tryptophan and synthesis of serotonin in the brain of the rat. Neuropharmacology, 26, 1099–1106.

    PubMed  CAS  Google Scholar 

  • Chaudhuri, A., & Behan, P. O. (2000). Fatigue and basal ganglia. Journal of Neurological Science, 179, 34–42.

    CAS  Google Scholar 

  • Chen, H., Zhang, S. M., Schwarzschild, M. A., et al. (2005). Physical activity and the risk of Parkinson disease. Neurology, 64, 664–669.

    PubMed  CAS  Google Scholar 

  • Chinevere, T. D., Sawyer, R. D., Creer, A. R., et al. (2002). Effects of l-tyrosine and carbohydrate ingestion on endurance exercise performance. Journal of Applied Physiology, 93, 1590–1597.

    PubMed  CAS  Google Scholar 

  • Cooter, G. R., & Stull, G. A. (1974). The effect of amphetamine on endurance in rats. Journal of Sports Medicine and Physical Fitness, 14, 120–126.

    PubMed  CAS  Google Scholar 

  • Cotman, C. W., & Berchtold, N. C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neuroscience, 25, 295–301.

    CAS  Google Scholar 

  • Craig, A., Tran, Y., Wijesuriya, N., et al. (2005). A controlled investigation into the psychological determinants of fatigue. Biological Psychology, 72, 78–87.

    PubMed  Google Scholar 

  • Crizzle, A. M., & Newhouse, I. J. (2006). Is physical exercise beneficial for persons with Parkinson’s disease? Clinical Journal of Sport Medicne, 16, 422–425.

    Google Scholar 

  • Davis, J. M. (1995). Central and peripheral factors in fatigue. Journal of Sports Sciences, 13(Spec No), S49–S53.

    Google Scholar 

  • Davis, J. M., Alderson, N. L., & Welsh, R. S. (2000). Serotonin and central nervous system fatigue: Nutritional considerations. American Journal of Clinical Nutrition, 72, 573S–578S.

    PubMed  CAS  Google Scholar 

  • Davis, J. M., & Bailey, S. P. (1997). Possible mechanisms of central nervous system fatigue during exercise. Medicine and Science in Sports and Exercise, 29, 45–57.

    PubMed  CAS  Google Scholar 

  • Davis, J. M., Zhao, Z., Stock, H. S., et al. (2003). Central nervous system effects of caffeine and adenosine on fatigue. American Journal of Physiology Regulatory, Integrative Comparative Physiology, 284, R399–R404.

    CAS  Google Scholar 

  • Derevenco, P., Sovrea, I., Stoica, N., et al. (1978). The effects of central chemical sympathectomy on the response to exercise in rats. Physiologie, 15, 215–219.

    PubMed  CAS  Google Scholar 

  • Derevenco, P., Stoica, N., Sovrea, I., et al. (1986). Central and peripheral effects of 6-hydroxydopamine on exercise performance in rats. Psychoneuroendocrinology, 11, 141–153.

    PubMed  CAS  Google Scholar 

  • Derevenco, P., Stoica, N., & Vaida, A. (1981). Other effects of monoaminergic inhibition with 6 hydroxydopamine and of disulfiram on the response to exercise in rats. Physiologie, 18, 181–185.

    PubMed  CAS  Google Scholar 

  • Derevenco, P., Vaida, A., Stoica, N., et al. (1982). New data concerning the effects of 6-hydroxydopamine on the exercise performance in rats. Physiologie, 19, 221–228.

    PubMed  CAS  Google Scholar 

  • Dishman, R. K., Berthoud, H. R., Booth, F. W., et al. (2006). Neurobiology of exercise. Scandinavian Journal of Medicine and Science in Sports, 16, 470.

    Google Scholar 

  • Elam, M., Svensson, T. H., & Thoren, P. (1987). Brain monoamine metabolism is altered in rats following spontaneous, long-distance running. Acta Physiologica Scandinavica, 130, 313–316.

    PubMed  CAS  Google Scholar 

  • Elsworth, J. D., & Roth, R. H. (1997). Dopamine synthesis, uptake, metabolism, and receptors: Relevance to gene therapy of Parkinson’s disease. Experimental Neurology, 144, 4–9.

    PubMed  CAS  Google Scholar 

  • Enoka, R. M., & Stuart, D. G. (1992). Neurobiology of muscle fatigue. Journal of Applied Physiology, 72, 1631–1648.

    PubMed  CAS  Google Scholar 

  • Fernstrom, J. D., & Fernstrom, M. H. (2006). Exercise, serum free tryptophan, and central fatigue. Journal of Nutrition, 136, 553S–559S.

    PubMed  CAS  Google Scholar 

  • Francois, C., Yelnik, J., Tande, D., et al. (1999). Dopaminergic cell group A8 in the monkey: Anatomical organization and projections to the striatum. Journal of Comparative Neurology, 414, 334–347.

    PubMed  CAS  Google Scholar 

  • Freed, C. R., & Yamamoto, B. K. (1985). Regional brain dopamine metabolism: A marker for the speed, direction, and posture of moving animals. Science, 229, 62–65.

    PubMed  CAS  Google Scholar 

  • Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Review, 81, 1725–1789.

    CAS  Google Scholar 

  • Gandevia, S. C., Allen, G. M., Butler, J. E., et al. (1996). Supraspinal factors in human muscle fatigue: Evidence for suboptimal output from the motor cortex. Journal of Physiology, 490(Pt 2), 529–536.

    PubMed  CAS  Google Scholar 

  • Gandevia, S. C., Enoka, R. M., McComas, A. J., et al. (1995). Neurobiology of muscle fatigue. Advances and issues. Advances in Experimental Medicine and Biology, 384, 515–525.

    PubMed  CAS  Google Scholar 

  • Gerald, M. C. (1978). Effects of (+)-amphetamine on the treadmill endurance performance of rats. Neuropharmacology, 17, 703–704.

    PubMed  CAS  Google Scholar 

  • Gerin, C., Becquet, D., & Privat, A. (1995). Direct evidence for the link between monoaminergic descending pathways and motor activity. I. A study with microdialysis probes implanted in the ventral funiculus of the spinal cord. Brain Research, 704, 191–201.

    PubMed  CAS  Google Scholar 

  • Gerin, C., & Privat, A. (1998). Direct evidence for the link between monoaminergic descending pathways and motor activity: II. A study with microdialysis probes implanted in the ventral horn of the spinal cord. Brain Research, 794, 169–173.

    PubMed  CAS  Google Scholar 

  • Gilliam, P. E., Spirduso, W. W., Martin, T. P., et al. (1984). The effects of exercise training on [3H]-spiperone binding in rat striatum. Pharmacology, Biochemistry and Behaviour, 20, 863–867.

    CAS  Google Scholar 

  • Guezennec, C. Y., Abdelmalki, A., Serrurier, B., et al. (1998). Effects of prolonged exercise on brain ammonia and amino acids. International Journal of Sports and Medicine, 19, 323–327.

    CAS  Google Scholar 

  • Guillin, O., Diaz, J., Carroll, P., et al. (2001). BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature, 411, 86–89.

    PubMed  CAS  Google Scholar 

  • Hasegawa, H., Yazawa, T., Yasumatsu, M., et al. (2000). Alteration in dopamine metabolism in the thermoregulatory center of exercising rats. Neuroscience Letters, 289, 161–164.

    PubMed  CAS  Google Scholar 

  • Hattori, S., Naoi, M., & Nishino, H. (1994). Striatal dopamine turnover during treadmill running in the rat: Relation to the speed of running. Brain Research Bulletin, 35, 41–49.

    PubMed  CAS  Google Scholar 

  • Heyes, M. P., Garnett, E. S., & Coates, G. (1985). Central dopaminergic activity influences rats ability to exercise. Life Science, 36, 671–677.

    CAS  Google Scholar 

  • Heyes, M. P., Garnett, E. S., & Coates, G. (1988). Nigrostriatal dopaminergic activity is increased during exhaustive exercise stress in rats. Life Science, 42, 1537–1542.

    CAS  Google Scholar 

  • Hillegaart, V., & Ahlenius, S. (1987). Effects of raclopride on exploratory locomotor activity, treadmill locomotion, conditioned avoidance behaviour and catalepsy in rats: Behavioural profile comparisons between raclopride, haloperidol and preclamol. Pharmacology and Toxicology, 60, 350–354.

    CAS  PubMed  Google Scholar 

  • Hillegaart, V., Ahlenius, S., Magnusson, O., et al. (1987). Repeated testing of rats markedly enhances the duration of effects induced by haloperidol on treadmill locomotion, catalepsy, and a conditioned avoidance response. Pharmacology, Biochemistry and Behaviour, 27, 159–164.

    CAS  Google Scholar 

  • Hoffmann, P., Elam, M., Thoren, P., et al. (1994). Effects of long-lasting voluntary running on the cerebral levels of dopamine, serotonin and their metabolites in the spontaneously hypertensive rat. Life Science, 54, 855–861.

    CAS  Google Scholar 

  • Horger, B. A., Iyasere, C. A., Berhow, M. T., et al. (1999). Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. Journal of Neuroscience, 19, 4110–4122.

    PubMed  CAS  Google Scholar 

  • Howells, F. M., Russell, V. A., Mabandla, M. V., et al. (2005). Stress reduces the neuroprotective effect of exercise in a rat model for Parkinson’s disease. Behavourial Brain Research, 165, 210–220.

    CAS  Google Scholar 

  • Hyman, C., Hofer, M., Barde, Y. A., et al. (1991). BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature, 350, 230–232.

    PubMed  CAS  Google Scholar 

  • Iversen, I. H. (1993). Techniques for establishing schedules with wheel running as reinforcement in rats. Journal of Experimental Analysis and Behaviour, 60, 219–238.

    CAS  Google Scholar 

  • Jacobs, B. L. (1991). Serotonin and behavior: Emphasis on motor control. Journal of Clinical Psychiatry, 52, 17–23.

    PubMed  Google Scholar 

  • Jacobs, B. L., & Fornal, C. A. (1999). Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology, 21, 9S–15S.

    PubMed  CAS  Google Scholar 

  • Jacobs, I., & Bell, D. G. (2004). Effects of acute modafinil ingestion on exercise time to exhaustion. Medicine and Science in Sports and Exercise, 36, 1078–1082.

    PubMed  CAS  Google Scholar 

  • Kalinski, M. I., Dluzen, D. E., & Stadulis, R. (2001). Methamphetamine produces subsequent reductions in running time to exhaustion in mice. Brain Research, 921, 160–164.

    PubMed  CAS  Google Scholar 

  • Kalmar, J. M., & Cafarelli, E. (2004). Caffeine: A valuable tool to study central fatigue in humans? Exercise and Sport Sciences Reviews, 32, 143–147.

    PubMed  Google Scholar 

  • Lacerda, A. C., Marubayashi, U., Balthazar, C. H., et al. (2006). Evidence that brain nitric oxide inhibition increases metabolic cost of exercise, reducing running performance in rats. Neuroscience Letters, 393, 260–263.

    PubMed  CAS  Google Scholar 

  • Le Moine, C., Normand, E., & Bloch, B. (1991). Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proceedings of National Academy Sciences USA, 88, 4205–4209.

    CAS  Google Scholar 

  • Lett, B. T., Grant, V. L., Byrne, M. J., et al. (2000). Pairings of a distinctive chamber with the aftereffect of wheel running produce conditioned place preference. Appetite, 34, 87–94.

    PubMed  CAS  Google Scholar 

  • Lim, B. V., Jang, M. H., Shin, M. C., et al. (2001). Caffeine inhibits exercise-induced increase in tryptophan hydroxylase expression in dorsal and median raphe of Sprague-Dawley rats. Neuroscience Letters, 308, 25–28.

    PubMed  CAS  Google Scholar 

  • Liste, I., Guerra, M. J., Caruncho, H. J., et al. (1997). Treadmill running induces striatal Fos expression via, N. M.DA glutamate and dopamine receptors. Experimental Brain Research, 115, 458–468.

    CAS  Google Scholar 

  • Lu, X. Y., Ghasemzadeh, M. B., & Kalivas, P. W. (1998). Expression of D1 receptor, D2 receptor, substance P and enkephalin messenger RNAs in the neurons projecting from the nucleus accumbens. Neuroscience, 82, 767–780.

    PubMed  CAS  Google Scholar 

  • MacRae, P. G., Spirduso, W. W., Cartee, G. D., et al. (1987). Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolite levels. Neuroscience Letters, 79, 138–144.

    PubMed  CAS  Google Scholar 

  • Marshall, J. F., & Berrios, N. (1979). Movement disorders of aged rats: Reversal by dopamine receptor stimulation. Science, 206, 477–479.

    PubMed  CAS  Google Scholar 

  • Martin-Iverson, M. T., Todd, K. G., & Altar, C. A. (1994). Brain-derived neurotrophic factor and neurotrophin-3 activate striatal dopamine and serotonin metabolism and related behaviors: Interactions with amphetamine. Journal of Neuroscience, 14, 1262–1270.

    PubMed  CAS  Google Scholar 

  • McTavish, S. F., Cowen, P. J., & Sharp, T. (1999). Effect of a tyrosine-free amino acid mixture on regional brain catecholamine synthesis and release. Psychopharmacology (Berl), 141, 182–188.

    CAS  Google Scholar 

  • Meeusen, R., Piacentini, M. F., & De Meirleir, K. (2001). Brain microdialysis in exercise research. Sports Medicine, 31, 965–983.

    PubMed  CAS  Google Scholar 

  • Meeusen, R., Roeykens, J., Magnus, L., et al. (1997a) Endurance performance in humans: The effect of a dopamine precursor or a specific serotonin (5-HT2A/2C) antagonist. International Journal of Sports Medicine, 18, 571–577.

    PubMed  CAS  Google Scholar 

  • Meeusen, R., Smolders, I., Sarre, S., et al. (1997b) Endurance training effects on neurotransmitter release in rat striatum: An in vivo microdialysis study. Acta Physiologica Scandinavica, 159, 335–341.

    PubMed  CAS  Google Scholar 

  • Meeusen, R., Watson, P., & Dvorak, J. (2006a) The brain and fatigue: New opportunities for nutritional interventions? Journal of Sports and Sciences, 24, 773–782.

    Google Scholar 

  • Meeusen, R., Watson, P., Hasegawa, H., et al. (2006b) Central fatigue: The serotonin hypothesis and beyond. Sports and Medicine, 36, 881–909.

    Google Scholar 

  • Milner, J. D., & Wurtman, R. J. (1987). Tyrosine availability: A presynaptic factor controlling catecholamine release. Advances in Experimental Medicine and Biology, 221, 211–221.

    PubMed  CAS  Google Scholar 

  • Newsholme, E. A., Acworth, I. N., & Blomstrand, E. (1987). Amino acids, brain neurotransmitters and a functional link between muscle and brain that is important in sustained exercise (pp. 127–133). London, UK: John Libbey Eurotext Ltd.

    Google Scholar 

  • Newsholme, E. A., & Blomstrand, E. (2006). Branched-chain amino acids and central fatigue. Journal of Nutrition, 136, 274S–276S.

    PubMed  CAS  Google Scholar 

  • Nielsen, B., & Nybo, L. (2003). Cerebral changes during exercise in the heat. Sports and Medicne, 33, 1–11.

    Google Scholar 

  • Nybo, L., Dalsgaard, M. K., Steensberg, A., et al. (2005). Cerebral ammonia uptake and accumulation during prolonged exercise in humans. Journal of Physiology, 563, 285–290.

    PubMed  CAS  Google Scholar 

  • Nybo, L., & Rasmussen, P. (2007). Inadequate cerebral oxygen delivery and central fatigue during strenuous exercise. Exercise and Sport Science Review, 35, 110–118.

    Google Scholar 

  • Nybo, L., & Secher, N. H. (2004). Cerebral perturbations provoked by prolonged exercise. Progress in Neurobiology, 72, 223–261.

    PubMed  Google Scholar 

  • Oldendorf, W. H., & Szabo, J. (1976). Amino acid assignment to one of three blood-brain barrier amino acid carriers. American Journal of Physiology, 230, 94–98.

    CAS  PubMed  Google Scholar 

  • Pardridge, W. M. (1977). Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. Journal of Neurochemistry, 28, 103–108.

    PubMed  CAS  Google Scholar 

  • Paxinos, G., Watson, C. (1998). The rat brain in stereotaxic coordinates. CA: Academic Press.

    Google Scholar 

  • Petzinger, G. M., Walsh, J. P., Akopian, G., et al. (2007). Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. Journal of Neuroscience, 27, 5291–5300.

    PubMed  CAS  Google Scholar 

  • Rietjens, G. J., Kuipers, H., Adam, J. J., et al. (2005). Physiological biochemical and psychological markers of strenuous training-induced fatigue. International Journal of Sports and Medicine, 26, 16–26.

    CAS  Google Scholar 

  • Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research Brain Research Reviews, 18, 247–291.

    PubMed  CAS  Google Scholar 

  • Robinson, T. E., & Berridge, K. C. (2000). The psychology and neurobiology of addiction: An incentive-sensitization view. Addiction, 95(Suppl 2), S91–S117.

    PubMed  Google Scholar 

  • Rojas Vega, S., Struder, H. K., Vera Wahrmann, B., et al. (2006). Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Research, 1121, 59–65.

    PubMed  CAS  Google Scholar 

  • Russo-Neustadt, A. A., & Chen, M. J. (2005). Brain-derived neurotrophic factor and antidepressant activity. Current Pharmaceutical Design, 11, 1495–1510.

    PubMed  CAS  Google Scholar 

  • Sabol, K. E., Richards, J. B., & Freed, C. R. (1990). In vivo dialysis measurements of dopamine and DOPAC in rats trained to turn on a circular treadmill. Pharmacology, Biochemistry and Behaviour, 36, 21–28.

    CAS  Google Scholar 

  • Snider, R. M., Ordway, G. A., & Gerald, M. C. (1983). Effects of methylphenidate on rat endurance performance and neuromuscular transmission in vitro. Neuropharmacology, 22, 83–88.

    PubMed  CAS  Google Scholar 

  • Speciale, S. G., Miller, J. D., McMillen, B. A., et al. (1986). Activation of specific central dopamine pathways: Locomotion and footshock. Brain Research Bulletin, 16, 33–38.

    PubMed  CAS  Google Scholar 

  • Spina, M. B., Squinto, S. P., Miller, J., et al. (1992). Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: Involvement of the glutathione system. Journal of Neurochemistry, 59, 99–106.

    PubMed  CAS  Google Scholar 

  • Stokes, M. J., Cooper, R. G., & Edwards, R. H. (1988). Normal muscle strength and fatigability in patients with effort syndromes. BMJ, 297, 1014–1017.

    Article  PubMed  CAS  Google Scholar 

  • Struder, H. K., Hollmann, W., Platen, P., et al. (1998). Influence of paroxetine, branched-chain amino acids and tyrosine on neuroendocrine system responses and fatigue in humans. Hormone and Metabolic Research, 30, 188–194.

    PubMed  CAS  Google Scholar 

  • Struder, H. K., & Weicker, H. (2001a) Physiology and pathophysiology of the serotonergic system and its implications on mental and physical performance. Part I. International Journal of Sports and Medicine, 22, 467–481.

    CAS  Google Scholar 

  • Struder, H. K., & Weicker, H. (2001b) Physiology and pathophysiology of the serotonergic system and its implications on mental and physical performance. Part II. International Journal of Sports and Medicine, 22, 482–497.

    CAS  Google Scholar 

  • Sutton, E. E., Coill, M. R., & Deuster, P. A. (2005). Ingestion of tyrosine: Effects on endurance, muscle strength, and anaerobic performance. International Journal of Sport Nutrition and Exercise Metabolism, 15, 173–185.

    PubMed  CAS  Google Scholar 

  • Tillerson, J. L., Caudle, W. M., Reveron, M. E., et al. (2003). Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson’s disease. Neuroscience, 119, 899–911.

    PubMed  CAS  Google Scholar 

  • Todd, G., Butler, J. E., Taylor, J. L., et al. (2005). Hyperthermia: A failure of the motor cortex and the muscle. Journal of Physiology, 563, 621–631.

    PubMed  CAS  Google Scholar 

  • Trudeau, F., Peronnet, F., Beliveau, L., et al. (1990). 6-OHDA sympathectomy andexercise performance in the rat. Archives Internationales de Physiologie et de Biochimie, 98, 433–437.

    Article  PubMed  CAS  Google Scholar 

  • Tumer, N., Demirel, H. A., Serova, L., et al. (2001). Geneexpression of catecholamine biosynthetic enzymes following exercise: Modulation by age. Neuroscience, 103, 703–711.

    PubMed  CAS  Google Scholar 

  • Van Hoomissen, J. D., Chambliss, H. O., Holmes, P. V., et al. (2003). Effects of chronic exercise and imipramine on mRNA for BDNF after olfactory bulbectomy in rat. Brain Research, 974, 228–235.

    PubMed  Google Scholar 

  • Vaynman, S., & Gomez-Pinilla, F. (2005). License to run: Exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabilitation and Neural Repair, 19, 283–295.

    PubMed  Google Scholar 

  • Wang, G. J., Volkow, N. D., Fowler, J. S., et al. (2000). PET studies of the effects of aerobic exercise on human striatal dopamine release. Journal of Nuclear Medicine, 41, 1352–1356.

    PubMed  CAS  Google Scholar 

  • Werme, M., Messer, C., Olson, L., et al. (2002). Delta FosB regulates wheel running. Journal of Neuroscience, 22, 8133–8138.

    PubMed  CAS  Google Scholar 

  • Williams, M. H., & Thompson, J. (1973). Effect of variant dosages of amphetamine upon endurance. Research Quarterly, 44, 417–422.

    PubMed  CAS  Google Scholar 

  • Wilson, W. M., & Marsden, C. A. (1995). Extracellular dopamine in the nucleus accumbens of the rat during treadmill running. Acta Physiologica Scandinavica, 155, 465–466.

    PubMed  CAS  Google Scholar 

  • Yee, R. E., Cheng, D. W., Huang, S. C., et al. (2001). Blood-brain barrier and neuronal membrane transport of 6-[18F]fluoro-l-DOPA. Biochemical Pharmacology, 62, 1409–1415.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Fleshner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foley, T.E., Fleshner, M. Neuroplasticity of Dopamine Circuits After Exercise: Implications for Central Fatigue. Neuromol Med 10, 67–80 (2008). https://doi.org/10.1007/s12017-008-8032-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-008-8032-3

Keywords

Navigation