Skip to main content
Log in

Motor and cognitive functions of the neostriatum during bilateral blockade of its dopamine receptors

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Studies on 60 Sprague-Dawley rats were performed to compare systemic and intrastriate administration of the selective D1 dopamine receptor blocker SCH23390 on the acquisition of a discriminant conditioned active avoidance reflex (CAAR) in a T maze and on behavior in an open field test. Systemic treatment at a dose of 0.025 mg/kg produced several-fold reductions in the proportion of correct performances of the discriminant CAAR and motor activity in the open field test. At the same time, bilateral microinjection of SCH23390 into the rat neostriatum at doses of 0.004–1.0 µg did not induce any deterioration in learning of the discriminant CAAR as compared with intact controls, though there was a sharp inhibition of motor activity in the open field test. Bilateral microinjections of the D2 dopamine receptor blocker raclopride into the rat neostriatum at a dose of 0.004 µg produced a marked and long-lasting degradation of learning of the discriminant CAAR. These data lead to the following conclusions: 1) the differences in the effects of systemic and intrastriate administration of SCH23390 appear to be associated with the fact that the behavioral changes seen after systemic administration may be mediated mainly by structures differing from neostriatal D1 receptors, and 2) the D1-mediated effects of the nigrostriatal dopaminergic system on the neostriatum are complex, with activation of motor activity (projection spiny neurons of the direct pathway) and weak modulation of the learning process (large aspiny cholinergic interneurons). Modulation of the learning process evidently occurs via neostriatal D2 dopaminergic receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. S. Borodkin and I. D. Shabanov, Neurophysiological Mechanisms of Memory Trace Extraction [in Russian], Nauka, Leningrad (1986).

    Google Scholar 

  2. N. I. Dubrovina and L. V. Loskutova, Dopaminergic Mechanisms of Memory and Attention [in Russian], Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk (2003).

    Google Scholar 

  3. V. N. Maiorov and A. G. Frolov, “Effects of systemic administration of selective antagonists of dopamine D1 and D2/3 receptors on food-related and motivational (escape reaction) conditioned paw-placing reflexes in cats,” Zh. Vyssh. Nerv. Deyat., 54, No. 4, 489–494 (2004).

    CAS  Google Scholar 

  4. N. F. Suvorov, N. B. Saul’skaya, and O. G. Chivileva, “The striatonigral level of the neurochemical organization of conditioned avoidance reflexes of different levels of complexity.” Zh. Vyssh. Nerv. Deyat., 32, No. 2, 276–283 (1982).

    CAS  Google Scholar 

  5. K. B. Shapovalova, E. V. Pominova, and T. A. Dyubkacheva, “Characteristics of the effects of the cholinergic system of the rat neostriatum on learning active avoidance in normal conditions and after lesioning of the inatralaminar nuclei of the thalamus,” Ros. Fiziol. Zh. im. I. M. Sechenova, 82, No. 1, 1–12 (1996).

    CAS  Google Scholar 

  6. K. B. Shapovalova, Yu. V. Kamkina, and D. A. Mysovskii, “Effects of microinjections of the selective muscarinic M1 receptor blocker pirenzipine into the neostriatum on motor behavior in rats,” Ros. Fiziol. Zh. im. I. M. Sechenova, 90, No. 2, 129–136 (2004).

    CAS  Google Scholar 

  7. A. F. Yakimovskii and I. V. Karpova, “Effects of chronic activation and blockade of the dopaminergic and enkephalinergic systems of the neostriatum on conditioned reflex behavior and dopamine metabolism in the nigrostriatal system in rats,” Zh. Vyssh. Nerv. Deyat., 42, No. 5, 930–936 (1992).

    Google Scholar 

  8. W. Adriani, F. Sargolini, and R. Coccurello, “Role of dopaminergic system in reactivity to spatial and non-spatial changes in mice,” Psychopharmacology, 150, No. 1, 67–76 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. T. Aosaki, H. Tsubokawa, A. Ishida, K. Watanabe, A. Graybiel, and M. Kimura, “Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning,” J. Neurosci., 14, No. 6, 3969–3984 (1994).

    PubMed  CAS  Google Scholar 

  10. A. E. Baldwin, K. Sadeghian, and A. E. Kelly, “Appetitive instrumental learning requires coincident activation of NMDA and dopamine Dl receptors within the medial prefrontal cortex,” J. Neurosci., 22, No. 3, 1053–1071 (2002).

    Google Scholar 

  11. R. J. Beninger, “The role of dopamine in locomotor activity and learning,” Brain Res. Rev., 6, 173–196 (1983).

    Article  CAS  Google Scholar 

  12. R. J. Beninger, “Dissociating the effects of altered dopaminergic function on performance and learning,” Brain Res. Bull., 23, 365–371 (1989).

    Article  PubMed  CAS  Google Scholar 

  13. J. R. Blackburn and A. G. Phillips, “Blockade of acquisition of one-way conditioned avoidance responding by haloperidol and metoclopramide but not by thioridazine and clozapine: implications for screening new antipsychotic drugs,” Psychopharmacol. (Berlin), 98, 453–459 (1989).

    Article  CAS  Google Scholar 

  14. C. Contant, D. Umbriaco, S. Garcia, K. Watkins, and J. Descaries, “Ultrastructural organization of the acetylcholine innervation in adult rat neostriatum,” Neurosci., 13, No. 4, 937–947 (1996).

    Article  Google Scholar 

  15. J. F. Flood, G. E. Smith, E. L. Bennett, et al., “Neurochemical and behavioral effects of catecholamine and protein synthesis inhibitions in mice,” Pharmacol. Biochem. Behav., 24, No. 3, 631–645 (1986).

    Article  PubMed  CAS  Google Scholar 

  16. C. Gerfen, “The neostriatal mosaic organization in the basal ganglia,” Ann. Rev. Neurosci., 15, No. 2, 285–329 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. F. A. Guarrachi, R. J. Flohardt, W. A. Falls, and B. S. Kapp, “The effects of intraamygdaloid infusions of a D2 dopamine receptor antagonists on Pavlovian fear conditioning,” Behav. Neurosci., 14, No. 3, 647–651 (2000).

    Article  Google Scholar 

  18. W. Heuber, “Involvement of basal ganglia transmitter systems,” Progr. Neurobiol., 56, No. 3, 507–540 (1998).

    Article  Google Scholar 

  19. E. Ince, B. J. Cillias, and A. Levey, “Differential organization of Dl and D2 dopamine and m4 muscarinic acetylcholine receptors protein in identified striatonigral neurons,” Synapse, 27, No. 3, 357–362 (1997).

    Article  PubMed  CAS  Google Scholar 

  20. T. Inone, Y. Maki, I. Muraki, and T. Koyama, “Effect of the dopamine D (1/5) antagonist SCH 23390 on the acquisition of conditioned fear,” Pharmacol. Biochem. Behav., 66, No. 3, 573–578 (2000).

    Article  Google Scholar 

  21. H. Kamei, T. Kameyama, and T. Nabeshima, “Activation of both dopamine Dl and D2 receptors necessary for amelioration of conditioned fear stress,” Eur. J. Pharmacol., 273, No. 3, 229–233 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. M. Kimura, M. Kato, H. Shimazaki, K. Watanabe, and N. Matsumoto, “Neural information transferred from the putamen to the globus pallidus during learned movement in the monkey,” J. Neurophysiol., 76, No. 6, 3771 (1996).

    PubMed  CAS  Google Scholar 

  23. N. Koshikawa, “Role of the nucleus accumbens and the striatum in the production of turning behavior in intact rats,” Rev. Neurosci., 5, No. 4, 331–346 (1994).

    PubMed  CAS  Google Scholar 

  24. Y. Kubota, S. Inagaki, S. Shimada, S. Kito, F. Eckenstein, and M. Tayama, “Neostriatal cholinergic neurons receive direct synaptic inputs from dopaminergic neurons,” Brain Res., 413, No. 2, 179–184 (1987).

    Article  PubMed  CAS  Google Scholar 

  25. M. J. Packard and N. M. White, “Memory facilitation produced by dopamine receptor agonists: role of receptor subtype and mnemonic requirement,” Pharmacol. Biochem. Behav., 33, No. 4, 511–518 (1986).

    Google Scholar 

  26. A. Parent and B. Lavoie, “Dopaminergic innervation of the basal ganglia in normal and Parkinsonian monkeys,” in: Current Concepts in Parkinson’s Disease Research, J. S. Schneider and M. Gupta (eds.), Hans Teuber, Toronto (1993).

    Google Scholar 

  27. M. A. Pezze, C. A. Heidbreder, J. Feldon, and C. A. Murphy, “Selective responding of nucleus accumbens core and shell dopamine to aversively conditioned contextual and discrete stimuli,” Neurosci., 108, No. 1, 91–102 (2001).

    Article  CAS  Google Scholar 

  28. J. N. Picada, N. Schroder, I. Izquierdo, et al., “Differential neurobehavioral deficits induced by apomorphine and its oxidation product, 8-oxo-apomorphine in rats,” Eur. J. Pharmacol., 443, No. 1–3, 105–111 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. R. Ranandi and R. J. Beninger, “The effects of systemic and intracerebral injections of D-l and D-2 agonists on brain stimulation reward,” Brain Res., 651, No. 1–2, 283–292 (1992).

    Google Scholar 

  30. W. Schultz, “Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey,” J. Neurophysiol., 56, No. 6, 1439–1461 (1986).

    PubMed  CAS  Google Scholar 

  31. J. L. Seamans, S. B. Floresco, and A. G. Phillips, “Dl receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory and executive functions in the rat,” J. Neurosci., 18, No. 4, 1613–1621 (1998).

    PubMed  CAS  Google Scholar 

  32. R. H. Silva, S. R. Kameda, R. C. Carvalho, et al., “Effects of amphetamine on the plus-maze discriminative avoidance task in mice,” Psychopharmacol., 160, No. 1, 9–18 (2002).

    Article  CAS  Google Scholar 

  33. B. J. Strupp, M. Bunney, D. Livitsky, and M. Kesler, “Time-dependent effects of post-trial amphetamine treatment in rats: evidence for enhanced storage of representational memory,” Behav. Neurol. Biol., 56, No. 1, 67–76 (1991).

    Article  Google Scholar 

  34. M. Tzschentke, “Pharmacology and behavioral pharmacology of the mesocortical dopamine system,” Progr. Neurobiol., 63, No. 3, 241–320 (2001).

    Article  CAS  Google Scholar 

  35. L. O. Wang and J. F. McGinty, “Muscarinic receptors regulate striatal neuropeptide gene expression on normal and amphetamine treated rats,” Neurosci., 75, No. 1, 43–50 (1996).

    Article  CAS  Google Scholar 

  36. K. Watanabe and M. Kimura, “Dopamine receptor — mediated mechanisms involved in the expression of learned activity of primate striatal neurons,” J. Neurophysiol., 79, No. 6, 2568–2580 (1998).

    PubMed  CAS  Google Scholar 

  37. N. M. White, M. G. Packard, and J. Seamans, “Memory enhancement by post-training peripheral administration of low doses of dopamine agonists: possible autoreceptor effect,” Behav. Neurol. Biol., 59, No. 2, 230–241 (1993).

    Article  CAS  Google Scholar 

  38. R. A. Wise, “Neuroleptics and operant behavior: the anhedonia hypothesis,” Behav. Brain Sci., 5, No. 1, 39–87 (1982).

    Article  Google Scholar 

  39. S. Yasumoto, E. Tanaka, G. Hattori, H. Maeda, and H. Higashi, “Direct and indirect actions of dopamine on the membrane potential in medium spiny neurons of the mouse neostriatum,” J. Neurophysiol., 82, 1234–1243 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 92, No. 10, pp. 1173–1186, October, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapovalova, K.B., Kamkina, Y.V. Motor and cognitive functions of the neostriatum during bilateral blockade of its dopamine receptors. Neurosci Behav Physi 38, 71–79 (2008). https://doi.org/10.1007/s11055-008-0010-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-008-0010-6

Key Words

Navigation