Skip to main content

Advertisement

Log in

Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial Perspectives

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Microbes are ubiquitously distributed in nature and are a critical part of the holobiont fitness. They are perceived as the most potential biochemical reservoir of inordinately diverse and multi-functional enzymes. The robust nature of the microbial enzymes with thermostability, pH stability and multi-functionality make them potential candidates for the efficient biotechnological processes under diverse physio-chemical conditions. The need for sustainable solutions to various environmental challenges has further surged the demand for industrial enzymes. Fueled by the recent advent of recombinant DNA technology, genetic engineering, and high-throughput sequencing and omics techniques, numerous microbial enzymes have been developed and further exploited for various industrial and therapeutic applications. Most of the hydrolytic enzymes (protease being the dominant hydrolytic enzyme) have broad range of industrial uses such as food and feed processing, polymer synthesis, production of pharmaceuticals, manufactures of detergents, paper and textiles, and bio-fuel refinery. In this review article, after a short overview of microbial enzymes, an approach has been made to highlight and discuss their potential relevance in biotechnological applications and industrial bio-processes, significant biochemical characteristics of the microbial enzymes, and various tools that are revitalizing the novel enzymes discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Singh, R., et al. (2016). Microbial enzymes: industrial progress in 21st century. 3Biotech, 6(2), 174.

    Google Scholar 

  2. Russell, J. B., Muck, R. E., & Weimer, P. J. (2009). Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiology Ecology, 67(2), 183–197.

    Article  CAS  PubMed  Google Scholar 

  3. Watanabe, H., & Tokuda, G. (2010). Cellulolytic systems in insects. Annual Review of Entomology, 55, 609–632.

    Article  CAS  PubMed  Google Scholar 

  4. Oldroyd, G. E., et al. (2011). The rules of engagement in the legume-rhizobial symbiosis. Annual Review of Genetics, 45, 119–144.

    Article  CAS  PubMed  Google Scholar 

  5. Rumpho, M. E., et al. (2011). The making of a photosynthetic animal. Journal of Experimental Biology, 214(2), 303–311.

    Article  PubMed  Google Scholar 

  6. Dubilier, N., Bergin, C., & Lott, C. (2008). Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nature Reviews Microbiology, 6(10), 725.

    Article  CAS  PubMed  Google Scholar 

  7. Demain, A. L., & Adrio, J. L. (2008). Contributions of microorganisms to industrial biology. Molecular Biotechnology, 38(1), 41.

    Article  CAS  PubMed  Google Scholar 

  8. Bull, M. J., & Plummer, N. T. (2014). Part 1: The human gut microbiome in health and disease. Integrative Medicine, 13(6), 17–22.

    PubMed  Google Scholar 

  9. Rosenberg, E., & Zilber-Rosenberg, I. (2016). Microbes drive evolution of animals and plants: The hologenome concept. MBio, 7(2), e01395-15.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chapman, J., Ismail, A., & Dinu, C. (2018). Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts, 8(6), 238.

    Article  CAS  Google Scholar 

  11. Currin, A., et al. (2015). Synthetic biology for the directed evolution of protein biocatalysts: Navigating sequence space intelligently. Chemical Society Reviews, 44(5), 1172–1239.

    Article  CAS  PubMed  Google Scholar 

  12. Anbu, P., et al. (2017). Microbial enzymes and their applications in industries and medicine 2016. BioMed Research International. https://doi.org/10.1155/2017/2195808.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gurung, N., et al. (2013). A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Research International. https://doi.org/10.1155/2013/329121.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Adrio, J. L., & Demain, A. L. (2014). Microbial enzymes: Tools for biotechnological processes. Biomolecules, 4(1), 117–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liese, A., Seelbach, K., & Wandrey, C. (2006). Industrial biotransformations. New York: Wiley.

    Book  Google Scholar 

  16. Webb, E. C. (1992). Enzyme nomenclature 1992. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes. San Diego, California: Academic Press. xiii + 863 pp.

  17. Kühne, W. (1976). Über das Verhalten verschiedener organisirter und sog. ungeformter Fermente. FEBS Letters, 62(S1), E4–E7.

    Article  Google Scholar 

  18. Turanli-Yildiz, B., Alkim, C., & Cakar, Z. P. (2012). Protein engineering methods and applications. Protein Engineering, 40, e71.

    Google Scholar 

  19. Kumar, A., & Singh, S. (2013). Directed evolution: tailoring biocatalysts for industrial applications. Critical Reviews in Biotechnology, 33(4), 365–378.

    Article  CAS  PubMed  Google Scholar 

  20. Cherry, J. R., & Fidantsef, A. L. (2003). Directed evolution of industrial enzymes: An update. Current Opinion in Biotechnology, 14(4), 438–443.

    Article  CAS  PubMed  Google Scholar 

  21. Underkofler, L., Barton, R., & Rennert, S. (1958). Production of microbial enzymes and their applications. Applied Microbiology, 6(3), 212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rubin-Pitel, S. B., & Zhao, H. (2006). Recent advances in biocatalysis by directed enzyme evolution. Combinatorial Chemistry & High Throughput Screening, 9(4), 247–257.

    Article  CAS  Google Scholar 

  23. Banerjee, A. (1994). Enzymic preparation of (3R-cis)-3-(acetyloxy)-4-phenyl-2-azetidinone: a taxol side-chain synthon. Biotechnology and Applied Biochemistry, 20(1), 23–33.

    PubMed  Google Scholar 

  24. Kuddus, M., & Ramteke, P. W. (2012). Recent developments in production and biotechnological applications of cold-active microbial proteases. Critical Reviews in Microbiology, 38(4), 330–338.

    Article  CAS  PubMed  Google Scholar 

  25. Anbu, P., et al. (2013). Microbial enzymes and their applications in industries and medicine. BioMed Research International. https://doi.org/10.1155/2017/2195808.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jaeger, K.-E., & Eggert, T. (2002). Lipases for biotechnology. Current Opinion in Biotechnology, 13(4), 390–397.

    Article  CAS  PubMed  Google Scholar 

  27. Anbu, P., et al. (2015). Microbial enzymes and their applications in industries and medicine 2014. BioMed Research International. https://doi.org/10.1155/2015/816419.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Singh, J., Batra, N., & Sobti, R. C. (2004). Purification and characterisation of alkaline cellulase produced by a novel isolate, Bacillus sphaericus JS1. Journal of Industrial Microbiology and Biotechnology, 31(2), 51–56.

    Article  CAS  PubMed  Google Scholar 

  29. Najafi, M. F., Deobagkar, D., & Deobagkar, D. (2005). Purification and characterization of an extracellular α-amylase from Bacillus subtilis AX20. Protein Expression and Purification, 41(2), 349–354.

    Article  CAS  PubMed  Google Scholar 

  30. Sharipova, M. R., et al. (2003). Membrane-bound forms of serine proteases in Bacillus intermedius. Microbiology, 72(5), 569–573.

    Article  CAS  Google Scholar 

  31. Sekhon, A., et al. (2005). Properties of a thermostable extracellular lipase from Bacillus megaterium AKG-1. Journal of Basic Microbiology, 45(2), 147–154.

    Article  CAS  PubMed  Google Scholar 

  32. Alvarez-Macarie, E., Augier-Magro, V., & Baratti, J. (1999). Characterization of a thermostable esterase activity from the moderate thermophile Bacillus licheniformis. Bioscience, Biotechnology, and Biochemistry, 63(11), 1865–1870.

    Article  CAS  PubMed  Google Scholar 

  33. Duan, X., Chen, J., & Wu, J. (2013). Improving the thermostability and catalytic efficiency of Bacillus deramificans pullulanase by site-directed mutagenesis. Applied and Environmental Microbiology, 79(13), 4072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ahn, S., et al. (2001). The “open” and “closed” structures of the type-C inorganic pyrophosphatases from Bacillus subtilis and Streptococcus gordonii11 edited by D. Rees. Journal of Molecular Biology, 313(4), 797–811.

    Article  CAS  PubMed  Google Scholar 

  35. Vanhanen, M., et al. (1997). Sensitization to industrial enzymes in enzyme research and production. Scandinavian Journal of Work, Environment & Health, 23, 385–391.

    Article  CAS  Google Scholar 

  36. Vanhanen, M., et al. (2001). Sensitisation to enzymes in the animal feed industry. Occupational and Environmental Medicine, 58(2), 119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar, C. V. M. N., et al. (2016). Thermostable β-D-glucosidase from Aspergillus flavus: Production, purification and characterization. International Journal of Clinical and Biological Sciences, 1, 1–15.

    CAS  Google Scholar 

  38. Vaseghi, Z., et al. (2013). Production of active lipase by Rhizopus oryzae from sugarcane bagasse: Solid state fermentation in a tray bioreactor. International Journal of Food Science & Technology, 48(2), 283–289.

    Article  CAS  Google Scholar 

  39. Vatsyayan, P., & Goswami, P. (2016). Highly active and stable large catalase isolated from a hydrocarbon degrading Aspergillus terreus MTCC 6324. Enzyme Research, 2016, 4379403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sri Kaja, B., et al. (2018). Investigating enzyme activity of immobilized candida rugosa lipase. Journal of Food Quality, 2018, 9.

    Article  CAS  Google Scholar 

  41. Wellenbeck, W., et al. (2017). Fast-track development of a lactase production process with Kluyveromyces lactis by a progressive parameter-control workflow. Engineering in Life Sciences, 17(11), 1185–1194.

    Article  CAS  Google Scholar 

  42. Chand Bhalla, T., et al. (2017). Invertase of Saccharomyces cerevisiae SAA-612: production, characterization and application in synthesis of fructo-oligosaccharides. LWT, 77, 178–185.

    Article  CAS  Google Scholar 

  43. Nigam, P. S. (2013). Microbial enzymes with special characteristics for biotechnological applications. Biomolecules, 3(3), 597–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sharma, M., & Chadha, B. S. (2011). Production of hemicellulolytic enzymes for hydrolysis of lignocellulosic biomass. In: A. Pandey, C. Larroche, S. C. Ricke, C. Dussap, & E. Gnanasonou (Eds.), Biofuels, alternative feed stocks and conversion processes (1st edn., pp. 214–217). USA: Academic.

    Google Scholar 

  45. Choct, M. (2006). Enzymes for the feed industry: Past, present and future. World’s Poultry Science Journal, 62(1), 5–16.

    Article  Google Scholar 

  46. Li, S., et al. (2012). Technology prospecting on enzymes: Application, marketing and engineering. Computational and Structural Biotechnology Journal, 2(3), e201209017.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lei, X., & Stahl, C. (2000). Nutritional benefits of phytase and dietary determinants of its efficacy. Journal of Applied Animal Research, 17(1), 97–112.

    Article  CAS  Google Scholar 

  48. Kies, A., Van Hemert, K., & Sauer, W. (2001). Effect of phytase on protein and amino acid digestibility and energy utilisation. World’s Poultry Science Journal, 57(2), 109–126.

    Article  Google Scholar 

  49. Oxenboll, K., Pontoppidan, K., & Fru-Nji, F. (2011). Use of a protease in poultry feed offers promising environmental benefits. International Journal of Poultry Science, 10(11), 842–848.

    Article  CAS  Google Scholar 

  50. Selle, P. H., & Ravindran, V. (2007). Microbial phytase in poultry nutrition. Animal Feed Science and Technology, 135(1–2), 1–41.

    Article  CAS  Google Scholar 

  51. Andualema, B., & Gessesse, A. (2012). Microbial lipases and their industrial applications: Review. Biotechnology, 11, 100–118.

    Article  CAS  Google Scholar 

  52. GROUP, F. (2011). World Enzymes. Cleveland, Ohio, United States of America, pp. 12–26.

  53. Olempska-Beer, Z. S., et al. (2006). Food-processing enzymes from recombinant microorganisms—a review. Regulatory Toxicology and Pharmacology, 45(2), 144–158.

    Article  CAS  PubMed  Google Scholar 

  54. Gupta, R., Rathi, P., & Bradoo, S. (2003). Lipase mediated upgradation of dietary fats and oils. Critical Reviews in Food Science and Nutrition, 43(6), 635–644.

    Article  CAS  PubMed  Google Scholar 

  55. Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial technology, 39(2), 235–251.

    Article  CAS  Google Scholar 

  56. Seitz, E. W. (1974). Industrial application of microbial lipases: A review. Journal of the American Oil Chemists’ Society, 51(2), 12–16.

    Article  CAS  PubMed  Google Scholar 

  57. Qureshi, M., et al. (2015). Enzymes used in dairy industries. International Journal of Applied Research, 1(10), 523–527.

    Google Scholar 

  58. Soares, I., et al. (2012). Microorganism-produced enzymes in the food industry. In Scientific, Health and Social Aspects of the Food Industry. InTech.

  59. Kumar, V., et al. (2014). Global scenario of industrial enzyme market. New York: Nova Science Publisher.

    Google Scholar 

  60. Kieliszek, M., & Misiewicz, A. (2014). Microbial transglutaminase and its application in the food industry. A review. Folia Microbiologica, 59(3), 241–250.

    Article  CAS  PubMed  Google Scholar 

  61. Van Der Maarel, M. J., et al. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94(2), 137–155.

    Article  PubMed  Google Scholar 

  62. Lee, C. C., et al. (2012). Isolation and characterization of a novel GH67 α-glucuronidase from a mixed culture. Journal of Industrial Microbiology and Biotechnology, 39(8), 1245–1251.

    Article  CAS  PubMed  Google Scholar 

  63. Law, B. A. (2002). The nature of enzymes and their action in foods. Boca Raton: CRC Press.

    Google Scholar 

  64. Banerjee, A., Chatterjee, K., & Madras, G. (2014). Enzymatic degradation of polymers: a brief review. Materials Science and Technology, 30(5), 567–573.

    Article  CAS  Google Scholar 

  65. Kobayashi, S., Uyama, H., & Ohmae, M. (2001). Enzymatic polymerization for precision polymer synthesis. Bulletin of the Chemical Society of Japan, 74(4), 613–635.

    Article  CAS  Google Scholar 

  66. Laffend, L. A., Nagarajan, V., & Nakamura C. E. (1997). Bioconversion of a fermentable carbon source to 1, 3-propanediol by a single microorganism. Google Patents.

  67. Vink, E. T., et al. (2007). The eco-profiles for current and near-future NatureWorks® polylactide (PLA) production. Industrial Biotechnology, 3(1), 58–81.

    Article  CAS  Google Scholar 

  68. Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics, 49(12), 832–864.

    Article  CAS  Google Scholar 

  69. Kobayashi, S. (2010). Lipase-catalyzed polyester synthesis–a green polymer chemistry. Proceedings of the Japan Academy, Series B, 86(4), 338–365.

    Article  CAS  Google Scholar 

  70. Solomon, E. I., Sundaram, U. M., & Machonkin, T. E. (1996). Multicopper oxidases and oxygenases. Chemical Reviews, 96(7), 2563–2606.

    Article  CAS  PubMed  Google Scholar 

  71. Kobayashi, S., & Higashimura, H. (2003). Oxidative polymerization of phenols revisited. Progress in Polymer Science, 28(6), 1015–1048.

    Article  CAS  Google Scholar 

  72. Ikeda, R., et al. (1998). Laccase-catalyzed polymerization of acrylamide. Macromolecular Rapid Communications, 19(8), 423–425.

    Article  CAS  Google Scholar 

  73. Aktaş, N., & Tanyolaç, A. (2003). Kinetics of laccase-catalyzed oxidative polymerization of catechol. Journal of Molecular Catalysis. B, Enzymatic, 22(1–2), 61–69.

    Article  CAS  Google Scholar 

  74. Ahuja, S. K., Ferreira, G. M., & Moreira, A. R. (2004). Utilization of enzymes for environmental applications. Critical Reviews in Biotechnology, 24(2–3), 125–154.

    Article  CAS  PubMed  Google Scholar 

  75. Choi, J.-M., Han, S.-S., & Kim, H.-S. (2015). Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnology Advances, 33(7), 1443–1454.

    Article  CAS  PubMed  Google Scholar 

  76. Dinçer, A., & Telefoncu, A. (2007). Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. Journal of Molecular Catalysis. B, Enzymatic, 45(1–2), 10–14.

    Article  CAS  Google Scholar 

  77. Silva, C. J., et al. (2005). Treatment of wool fibres with subtilisin and subtilisin-PEG. Enzyme and Microbial Technology, 36(7), 917–922.

    Article  CAS  Google Scholar 

  78. Araujo, R., Casal, M., & Cavaco-Paulo, A. (2008). Application of enzymes for textile fibres processing. Biocatalysis and Biotransformation, 26(5), 332–349.

    Article  CAS  Google Scholar 

  79. Chen, S., et al. (2013). Cutinase: characteristics, preparation, and application. Biotechnology Advances, 31(8), 1754–1767.

    Article  CAS  PubMed  Google Scholar 

  80. Mojsov, K. (2012). Microbial alpha-amylases and their industrial applications: a review. International Journal of Management, IT and Engineering (IJMIE), 2(10), 583–609.

    Google Scholar 

  81. Yavuz, M., Kaya, G., & Aytekin, Ç. (2014). Using Ceriporiopsis subvermispora CZ-3 laccase for indigo carmine decolourization and denim bleaching. International Biodeterioration and Biodegradation, 88, 199–205.

    Article  CAS  Google Scholar 

  82. Srivastava, N., & Singh, P. (2015). Degradation of toxic pollutants from pulp & paper mill effluent. Discovery, 40(183), 221–227.

    Google Scholar 

  83. Virk, A. P., Sharma, P., & Capalash, N. (2012). Use of laccase in pulp and paper industry. Biotechnology Progress, 28(1), 21–32.

    Article  CAS  PubMed  Google Scholar 

  84. Lee, C., Darah, I., & Ibrahim, C. (2007). Enzymatic deinking of laser printed office waste papers: Some governing parameters on deinking efficiency. Bioresource Technology, 98(8), 1684–1689.

    Article  CAS  PubMed  Google Scholar 

  85. Kirk, T. K., & Jeffries, T. W. (1996). Roles for microbial enzymes in pulp and paper processing. Washington, DC: American Chemical Society.

    Book  Google Scholar 

  86. Beg, Q., et al. (2001). Microbial xylanases and their industrial applications: A review. Applied Microbiology and Biotechnology, 56(3–4), 326–338.

    Article  CAS  PubMed  Google Scholar 

  87. Clarke, J., et al. (2000). A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and α-galactosidase. Applied Microbiology and Biotechnology, 53(6), 661–667.

    Article  CAS  PubMed  Google Scholar 

  88. Clouthier, C. M., & Pelletier, J. N. (2012). Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Chemical Society Reviews, 41(4), 1585–1605.

    Article  CAS  PubMed  Google Scholar 

  89. Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology, 13(4), 345–351.

    Article  CAS  PubMed  Google Scholar 

  90. Kuddus, M., & Ramteke, P. W. (2009). Cold-active extracellular alkaline protease from an alkaliphilic Stenotrophomonas maltophilia: Production of enzyme and its industrial applications. Canadian Journal of Microbiology, 55(11), 1294–1301.

    Article  CAS  PubMed  Google Scholar 

  91. Greene, R. V., Cotta, M. A., & Griffin, H. L. (1989). A novel, symbiotic bacterium isolated from marine shipworm secretes proteolytic activity. Current Microbiology, 19(6), 353–356.

    Article  CAS  Google Scholar 

  92. Greene, R. V., Griffin, H. L., & Cotta, M. A. (1996). Utility of alkaline protease from marine shipworm bacterium in industrial cleansing applications. Biotechnology Letters, 18(7), 759–764.

    Article  CAS  Google Scholar 

  93. Masse, L., Kennedy, K., & Chou, S. (2001). Testing of alkaline and enzymatic hydrolysis pretreatments for fat particles in slaughterhouse wastewater. Bioresource Technology, 77(2), 145–155.

    Article  CAS  PubMed  Google Scholar 

  94. Pio, T. F., & Macedo, G. A. (2009). Cutinases: properties and industrial applications. Advances in Applied Microbiology, 66, 77–95.

    Article  CAS  PubMed  Google Scholar 

  95. Sanchez, S., & Demain, A. L. (2010). Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Organic Process Research & Development, 15(1), 224–230.

    Article  CAS  Google Scholar 

  96. Demain, A. L. (2014). Importance of microbial natural products and the need to revitalize their discovery. Journal of Industrial Microbiology and Biotechnology, 41(2), 185–201.

    Article  CAS  PubMed  Google Scholar 

  97. Mane, P., & Tale, V. (2015). Overview of microbial therapeutic enzymes. Int J Curr Microbiol App Sci, 4(4), 17–26.

    CAS  Google Scholar 

  98. Ghosh, P., et al. (1992). Microbial lipases: production and applications. Science Progress, 79, 119–157.

    Google Scholar 

  99. Lott, J., & Lu, C. (1991). Lipase isoforms and amylase isoenzymes: Assays and application in the diagnosis of acute pancreatitis. Clinical Chemistry, 37(3), 361–368.

    Article  CAS  PubMed  Google Scholar 

  100. Sokurenko, Y. V., et al. (2015). Identification of 2′, 3′-cGMP as an intermediate of RNA catalytic cleavage by binase and evaluation of its biological action. Russian Journal of Bioorganic Chemistry, 41(1), 31–36.

    Article  CAS  Google Scholar 

  101. Iftime, D., et al. (2016). Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tu 365. Journal of Industrial Microbiology and Biotechnology, 43(2–3), 277–291.

    Article  CAS  PubMed  Google Scholar 

  102. Wolf, H., & Zähner, H. (1972). Stoffwechselprodukte von Mikroorganismen. Archives of Microbiology, 83(2), 147–154.

    CAS  Google Scholar 

  103. Palta, S., Saroa, R., & Palta, A. (2014). Overview of the coagulation system. Indian Journal of Anaesthesia, 58(5), 515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cho, Y.-H., et al. (2010). Production of nattokinase by batch and fed-batch culture of Bacillus subtilis. New Biotechnology, 27(4), 341–346.

    Article  CAS  PubMed  Google Scholar 

  105. Okafor, N., & Okeke, B. C. (2017). Modern industrial microbiology and biotechnology. Boca raton: CRC Press.

    Google Scholar 

  106. Le Roes-Hill, M., & Prins, A. (2016) Biotechnological potential of oxidative enzymes from Actinobacteria, in Actinobacteria-Basics and Biotechnological Applications. InTech.

  107. Ali, S., & Qadeer, M. (2002). Biosynthesis of L-DOPA by Aspergillus oryzae. Bioresource Technology, 85(1), 25–29.

    Article  PubMed  Google Scholar 

  108. Piel, J., et al. (2004). Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proceedings of the National Academic Science United States of America, 101(46), 16222–16227.

    Article  CAS  Google Scholar 

  109. Deublein, D., & Steinhauser, A. (2011). Biogas from waste and renewable resources: an introduction. New York: Wiley.

    Google Scholar 

  110. Sakimoto, K. K., Wong, A. B., & Yang, P. (2016). Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science, 351(6268), 74–77.

    Article  CAS  PubMed  Google Scholar 

  111. Ramos, H. A., de Produção, B. P. E. D., & de Deficiências, E. P. Faculdade de Tecnologia e Ciências Diretoria de Pesquisa e Pós-Graduação Stricto Sensu Mestrado Profissional em Tecnologias Aplicáveis à Bioenergia.

  112. Medie, F. M., et al. (2012). Genome analyses highlight the different biological roles of cellulases. Nature Reviews Microbiology, 10(3), 227–234.

    Article  CAS  Google Scholar 

  113. Okeke, B. C., et al. (2015). Selection and molecular characterization of cellulolytic-xylanolytic fungi from surface soil-biomass mixtures from Black Belt sites. Microbiological Research, 175, 24–33.

    Article  CAS  PubMed  Google Scholar 

  114. Kudanga, T., & Le Roes-Hill, M. (2014). Laccase applications in biofuels production: current status and future prospects. Applied Microbiology and Biotechnology, 98(15), 6525–6542.

    Article  CAS  PubMed  Google Scholar 

  115. Fang, Z., et al. (2015). Identification of a laccase Glac15 from Ganoderma lucidum 77002 and its application in bioethanol production. Biotechnology for Biofuels, 8(1), 54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shallom, D., & Shoham, Y. (2003). Microbial hemicellulases. Current Opinion in Microbiology, 6(3), 219–228.

    Article  CAS  PubMed  Google Scholar 

  117. Valadares, F., et al. (2016). Exploring glycoside hydrolases and accessory proteins from wood decay fungi to enhance sugarcane bagasse saccharification. Biotechnology for Biofuels, 9(1), 110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang, X.-F., et al. (2016). A general and efficient strategy for generating the stable enzymes. Scientific reports, 6, 33797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Alcalde, M., et al. (2006). Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends in Biotechnology, 24(6), 281–287.

    Article  CAS  PubMed  Google Scholar 

  120. Hildén, K., Hakala, T. K., & Lundell, T. (2009). Thermotolerant and thermostable laccases. Biotechnology Letters, 31(8), 1117.

    Article  CAS  PubMed  Google Scholar 

  121. Rigoldi, F., et al. (2018). Engineering of thermostable enzymes for industrial applications. APL Bioengineering, 2(1), 011501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lam, K. S. (2006). Discovery of novel metabolites from marine actinomycetes. Current Opinion in Microbiology, 9(3), 245–251.

    Article  CAS  PubMed  Google Scholar 

  123. Ladenstein, R., & Ren, B. (2006). Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles. The FEBS Journal, 273(18), 4170–4185.

    Article  CAS  PubMed  Google Scholar 

  124. Liszka, M. J., et al. (2012). Nature versus nurture: Developing enzymes that function under extreme conditions. Annual Review of Chemical and Biomolecular Engineering, 3(1), 77–102.

    Article  CAS  PubMed  Google Scholar 

  125. Brock, T. D., & Freeze, H. (1969). Thermus aquaticus gen n. and sp n., a nonsporulating extreme thermophile. Journal of Bacteriology, 98(1), 289–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Haki, G. D., & Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes: A review. Bioresource Technology, 89(1), 17–34.

    Article  CAS  PubMed  Google Scholar 

  127. Haddar, A., et al. (2009). Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: Purification, characterization and potential application as a laundry detergent additive. Bioresource Technology, 100(13), 3366–3373.

    Article  CAS  PubMed  Google Scholar 

  128. Ramkumar, A., et al. (2018). Production of thermotolerant, detergent stable alkaline protease using the gut waste of Sardinella longiceps as a substrate: Optimization and characterization. Scientific Reports, 8(1), 12442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Neklyudov, A. D., Ivankin, A. N., & Berdutina, A. V. (2000). Properties and uses of protein hydrolysates (Review). Applied Biochemistry and Microbiology, 36(5), 452–459.

    Article  Google Scholar 

  130. Mo, S., Kim, J.-H., & Cho, K. W. (2009). Enzymatic properties of an extracellular phospholipase C purified from a marine streptomycete. Bioscience, Biotechnology, and Biochemistry, 20, 9. https://doi.org/10.1271/bbb.90323.

    Article  CAS  Google Scholar 

  131. Saxena, R. K., et al. (2007). A highly thermostable and alkaline amylase from a Bacillus sp. PN5. Bioresource Technology, 98(2), 260–265.

    Article  CAS  PubMed  Google Scholar 

  132. Zhang, J., et al. (2011). Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw. Biotechnology for Biofuels, 4(1), 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fernandes, A. T., et al. (2007). A robust metallo-oxidase from the hyperthermophilic bacterium Aquifex aeolicus. The FEBS Journal, 274(11), 2683–2694.

    Article  CAS  PubMed  Google Scholar 

  134. Bommarius, A. S., & Paye, M. F. (2013). Stabilizing biocatalysts. Chemical Society Reviews, 42(15), 6534–6565.

    Article  CAS  PubMed  Google Scholar 

  135. Arnold, F. (2010). How proteins adapt: lessons from directed evolution. Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  136. Packer, M. S., & Liu, D. R. (2015). Methods for the directed evolution of proteins. Nature Reviews Genetics, 16(7), 379.

    Article  CAS  PubMed  Google Scholar 

  137. Tiwari, V. (2016). In vitro engineering of novel bioactivity in the natural enzymes. Frontiers in chemistry, 4, 39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yang, J., et al. (2017). Casting epPCR (cepPCR): A simple random mutagenesis method to generate high quality mutant libraries. Biotechnology and Bioengineering, 114(9), 1921–1927.

    Article  CAS  PubMed  Google Scholar 

  139. Socha, R. D., & Tokuriki, N. (2013). Modulating protein stability–directed evolution strategies for improved protein function. The FEBS journal, 280(22), 5582–5595.

    Article  CAS  PubMed  Google Scholar 

  140. Soo, V. W., et al. (2016). Mechanistic and evolutionary insights from the reciprocal promiscuity of two pyridoxal phosphate-dependent enzymes. Journal of Biological Chemistry, 291(38), 19873–19887.

    Article  CAS  PubMed  Google Scholar 

  141. Stephens, D. E., et al. (2007). Directed evolution of the thermostable xylanase from Thermomyces lanuginosus. Journal of Biotechnology, 127(3), 348–354.

    Article  CAS  PubMed  Google Scholar 

  142. Wang, H. H., et al. (2009). Programming cells by multiplex genome engineering and accelerated evolution. Nature, 460(7257), 894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kaul, P., & Asano, Y. (2012). Strategies for discovery and improvement of enzyme function: State of the art and opportunities. Microbial Biotechnology, 5(1), 18–33.

    Article  CAS  PubMed  Google Scholar 

  144. Wang, K., et al. (2014). Thermostability improvement of a Streptomyces xylanase by introducing proline and glutamic acid residues. Applied and Environmental Microbiology, 80(7), 2158–2165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wintrode, P. L., Miyazaki, K., & Arnold, F. H. (2001). Patterns of adaptation in a laboratory evolved thermophilic enzyme. Biochimica et Biophysica Acta, 1549(1), 1–8.

    Article  CAS  PubMed  Google Scholar 

  146. Yu, H., et al. (2017). Two strategies to engineer flexible loops for improved enzyme thermostability. Scientific reports, 7, 41212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Li, W. F., Zhou, X. X., & Lu, P. (2005). Structural features of thermozymes. Biotechnology Advances, 23(4), 271–281.

    Article  CAS  PubMed  Google Scholar 

  148. Margulies, M., et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437(7057), 376.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Teather, R. M., & Erfle, J. D. (1990). DNA sequence of a Fibrobacter succinogenes mixed-linkage beta-glucanase (1, 3-1, 4-beta-d-glucan 4-glucanohydrolase) gene. Journal of Bacteriology, 172(7), 3837–3841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Shi, P., et al. (2010). Cloning, characterization, and antifungal activity of an endo-1, 3-β-d-glucanase from Streptomyces sp. S27. Applied Microbiology and Biotechnology, 85(5), 1483–1490.

    Article  CAS  PubMed  Google Scholar 

  151. Qiao, J., et al. (2009). Cloning of a β-1, 3-1, 4-glucanase gene from Bacillus subtilis MA139 and its functional expression in Escherichia coli. Applied Biochemistry and Biotechnology, 152(2), 334–342.

    Article  CAS  PubMed  Google Scholar 

  152. Hua, C., et al. (2010). High-level expression of a specific β-1, 3-1, 4-glucanase from the thermophilic fungus Paecilomyces thermophila in Pichia pastoris. Applied Microbiology and Biotechnology, 88(2), 509–518.

    Article  CAS  PubMed  Google Scholar 

  153. Niture, S. (2008). Comparative biochemical and structural characterizations of fungal polygalacturonases. Biologia, 63(1), 1–19.

    Article  CAS  Google Scholar 

  154. Wang, C., et al. (2015). Biochemical characterization of a thermophilic β-mannanase from Talaromyces leycettanus JCM12802 with high specific activity. Applied Microbiology and Biotechnology, 99(3), 1217–1228.

    Article  CAS  PubMed  Google Scholar 

  155. Grey, M. J., et al. (2006). Characterizing a partially folded intermediate of the villin headpiece domain under non-denaturing conditions: contribution of His41 to the pH-dependent stability of the N-terminal subdomain. Journal of Molecular Biology, 355(5), 1078–1094.

    Article  CAS  PubMed  Google Scholar 

  156. Luisi, D. L., et al. (2003). Surface salt bridges, double-mutant cycles, and protein stability: An experimental and computational analysis of the interaction of the Asp 23 side chain with the N-terminus of the N-terminal domain of the ribosomal protein l9. Biochemistry, 42(23), 7050–7060.

    Article  CAS  PubMed  Google Scholar 

  157. Mazzini, A., et al. (2007). Dissociation and unfolding of bovine odorant binding protein at acidic pH. Journal of Structural Biology, 159(1), 82–91.

    Article  CAS  PubMed  Google Scholar 

  158. García-Mayoral, M. F., et al. (2006). pH-dependent conformational stability of the ribotoxin α-sarcin and four active site charge substitution variants. Biochemistry, 45(46), 13705–13718.

    Article  CAS  PubMed  Google Scholar 

  159. Lindman, S., et al. (2007). pKa values for side-chain carboxyl groups of a PGB1 variant explain salt and pH-dependent stability. Biophysical Journal, 92(1), 257–266.

    Article  CAS  PubMed  Google Scholar 

  160. Horng, J.-C., Cho, J.-H., & Raleigh, D. P. (2005). Analysis of the pH-dependent folding and stability of histidine point mutants allows characterization of the denatured state and transition state for protein folding. Journal of Molecular Biology, 345(1), 163–173.

    Article  CAS  PubMed  Google Scholar 

  161. Schreiber, G., & Fersht, A. R. (1993). Interaction of barnase with its polypeptide inhibitor barstar studied by protein engineering. Biochemistry, 32(19), 5145–5150.

    Article  CAS  PubMed  Google Scholar 

  162. Hom, R. A., et al. (2007). pH-dependent binding of the Epsin ENTH domain and the AP180 ANTH domain to PI (4, 5) P2-containing bilayers. Journal of Molecular Biology, 373(2), 412–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Re, F., et al. (2008). Prion protein structure is affected by pH-dependent interaction with membranes: A study in a model system. FEBS Letters, 582(2), 215–220.

    Article  CAS  PubMed  Google Scholar 

  164. Kawai, C., et al. (2005). pH-dependent interaction of cytochrome c with mitochondrial mimetic membranes The role of an array of positively charged amino acids. Journal of Biological Chemistry, 280(41), 34709–34717.

    Article  CAS  PubMed  Google Scholar 

  165. Yoo, S. H. (1994). pH-dependent interaction of chromogranin A with integral membrane proteins of secretory vesicle including 260-kDa protein reactive to inositol 1, 4, 5-triphosphate receptor antibody. Journal of Biological Chemistry, 269(16), 12001–12006.

    CAS  PubMed  Google Scholar 

  166. Schreiber, G., & Fersht, A. R. (1995). Energetics of protein-protein interactions: Analysis ofthe Barnase-Barstar interface by single mutations and double mutant cycles. Journal of Molecular Biology, 248(2), 478–486.

    CAS  PubMed  Google Scholar 

  167. Talley, K., & Alexov, E. (2010). On the pH-optimum of activity and stability of proteins. Proteins, 78(12), 2699–2706.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Carbonell, P., Lecointre, G., & Faulon, J.-L. (2011). Origins of specificity and promiscuity in metabolic networks. Journal of Biological Chemistry, 286(51), 43994–44004.

    Article  CAS  PubMed  Google Scholar 

  169. Jeffery, C. J. (2003). Multifunctional proteins: Examples of gene sharing. Annals of Medicine, 35(1), 28–35.

    Article  CAS  PubMed  Google Scholar 

  170. Huberts, D. H., & van der Klei, I. J. (2010). Moonlighting proteins: An intriguing mode of multitasking. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1803(4), 520–525.

    Article  CAS  Google Scholar 

  171. Cheng, X.-Y., et al. (2012). A global characterization and identification of multifunctional enzymes. PLoS ONE, 7(6), e38979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hult, K., & Berglund, P. (2007). Enzyme promiscuity: Mechanism and applications. Trends in Biotechnology, 25(5), 231–238.

    Article  CAS  PubMed  Google Scholar 

  173. Copley, S. D. (2003). Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Current Opinion in Chemical Biology, 7(2), 265–272.

    Article  CAS  PubMed  Google Scholar 

  174. Delgado-Baquerizo, M., et al. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sogin, M. L., et al. (2006). Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proceedings of the National Academy of Sciences USA, 103(32), 12115–12120.

    Article  CAS  Google Scholar 

  176. Jeon, J. H., et al. (2009). Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome. Applied Microbiology and Biotechnology, 81(5), 865–874.

    Article  CAS  PubMed  Google Scholar 

  177. Thapa, S., et al. (2017). Metagenomics prospective in bio-mining the microbial enzymes. Journal of Genes and Proteins, 1, 1–5.

    Google Scholar 

  178. Steele, H. L., & Streit, W. R. (2005). Metagenomics: Advances in ecology and biotechnology. FEMS Microbiology Letters, 247(2), 105–111.

    Article  CAS  PubMed  Google Scholar 

  179. Daniel, R. (2005). The metagenomics of soil. Nature Reviews Microbiology, 3(6), 470.

    Article  CAS  PubMed  Google Scholar 

  180. Alma’abadi, A. D., Gojobori, T., & Mineta, K. (2015). Marine metagenome as a resource for novel enzymes. Genomics, Proteomics & Bioinformatics, 13(5), 290–295.

    Article  Google Scholar 

  181. Uchiyama, T., & Miyazaki, K. (2010). Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes. Applied and Environmental Microbiology, 76(21), 7029–7035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Beloqui, A., et al. (2010). Diversity of glycosyl hydrolases from cellulose-depleting communities enriched from casts of two earthworm species. Applied and Environmental Microbiology, 76(17), 5934–5946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Riesenfeld, C. S., Goodman, R. M., & Handelsman, J. (2004). Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environmental Microbiology, 6(9), 981–989.

    Article  CAS  PubMed  Google Scholar 

  184. Venter, J. C., et al. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304(5667), 66–74.

    Article  PubMed  Google Scholar 

  185. Rusch, D. B., et al. (2007). The Sorcerer II global ocean sampling expedition: Northwest Atlantic through eastern tropical Pacific. PLoS Biology, 5(3), e77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Coolon, J. D., et al. (2013). Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in tallgrass prairie. PLoS ONE, 8(6), e67884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Pathak, G., et al. (2009). Novel blue light-sensitive proteins from a metagenomic approach. Environmental Microbiology, 11(9), 2388–2399.

    Article  CAS  PubMed  Google Scholar 

  188. Voget, S., Steele, H. L., & Streit, W. R. (2006). Characterization of a metagenome-derived halotolerant cellulase. Journal of Biotechnology, 126(1), 26–36.

    Article  CAS  PubMed  Google Scholar 

  189. Waschkowitz, T., Rockstroh, S., & Daniel, R. (2009). Isolation and characterization of metalloproteases with a novel domain structure by construction and screening of metagenomic libraries. Applied and Environmental Microbiology, 75(8), 2506–2516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gong, X., et al. (2012). Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene. BMC research notes, 5(1), 566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hess, M., et al. (2011). Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science, 331(6016), 463–467.

    Article  CAS  PubMed  Google Scholar 

  192. Duan, C. J., et al. (2009). Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. Journal of Applied Microbiology, 107(1), 245–256.

    Article  CAS  PubMed  Google Scholar 

  193. Ilmberger, N., et al. (2014). A comparative metagenome survey of the fecal microbiota of a breast-and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes. PLoS ONE, 9(9), e106707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Warnecke, F., et al. (2007). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 450(7169), 560.

    Article  CAS  PubMed  Google Scholar 

  195. Hedlund, B. P., et al. (2013). An integrated study reveals diverse methanogens, Thaumarchaeota, and yet-uncultivated archaeal lineages in Armenian hot springs. Antonie van Leeuwenhoek, 104(1), 71–82.

    Article  PubMed  Google Scholar 

  196. Huang, Q., et al. (2013). Archaeal and bacterial diversity in acidic to circumneutral hot springs in the Philippines. FEMS Microbiology Ecology, 85(3), 452–464.

    Article  CAS  PubMed  Google Scholar 

  197. Hou, W., et al. (2013). A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PLoS ONE, 8(1), e53350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sylvan, J. B., Toner, B. M., & Edwards, K. J. (2012). Life and death of deep-sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal sulfides. MBio, 3(1), e00279-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Rhee, J.-K., et al. (2005). New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Applied and Environmental Microbiology, 71(2), 817–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Simon, C., et al. (2009). Rapid identification of genes encoding DNA polymerases by function-based screening of metagenomic libraries derived from glacial ice. Applied and Environmental Microbiology, 75(9), 2964–2968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Heath, C., et al. (2009). Identification of a novel alkaliphilic esterase active at low temperatures by screening a metagenomic library from antarctic desert soil. Applied and Environmental Microbiology, 75(13), 4657–4659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Rondon, M. R., et al. (2000). Cloning the soil metagenome: A strategy for accessing the genetic and functional diversity of uncultured microorganisms. Applied and Environmental Microbiology, 66(6), 2541–2547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wang, K., et al. (2010). A novel metagenome-derived β-galactosidase: Gene cloning, overexpression, purification and characterization. Applied Microbiology and Biotechnology, 88(1), 155–165.

    Article  CAS  PubMed  Google Scholar 

  204. Jiang, C., et al. (2011). Biochemical characterization of two novel β-glucosidase genes by metagenome expression cloning. Bioresource Technology, 102(3), 3272–3278.

    Article  CAS  PubMed  Google Scholar 

  205. Fernández-Álvaro, E., et al. (2010). Enantioselective kinetic resolution of phenylalkyl carboxylic acids using metagenome-derived esterases. Microbial Biotechnology, 3(1), 59–64.

    Article  CAS  PubMed  Google Scholar 

  206. Knietsch, A., et al. (2003). Construction and screening of metagenomic libraries derived from enrichment cultures: Generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli. Applied and Environmental Microbiology, 69(3), 1408–1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Jiang, C., et al. (2009). Biochemical characterization of a metagenome-derived decarboxylase. Enzyme and Microbial Technology, 45(1), 58–63.

    Article  CAS  Google Scholar 

  208. Gabor, E. M., De Vries, E. J., & Janssen, D. B. (2004). Construction, characterization, and use of small-insert gene banks of DNA isolated from soil and enrichment cultures for the recovery of novel amidases. Environmental Microbiology, 6(9), 948–958.

    Article  CAS  PubMed  Google Scholar 

  209. Bayer, S., Birkemeyer, C., & Ballschmiter, M. (2011). A nitrilase from a metagenomic library acts regioselectively on aliphatic dinitriles. Applied Microbiology and Biotechnology, 89(1), 91–98.

    Article  CAS  PubMed  Google Scholar 

  210. Kotik, M., et al. (2010). Access to enantiopure aromatic epoxides and diols using epoxide hydrolases derived from total biofilter DNA. Journal of Molecular Catalysis. B, Enzymatic, 65(1–4), 41–48.

    Article  CAS  Google Scholar 

  211. Popovic, A., et al. (2017). Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families. Scientific reports, 7, 44103.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Lenfant, N., et al. (2012). ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: Tools to explore diversity of functions. Nucleic Acids Research, 41(D1), D423–D429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wei, Y., et al. (1999). Crystal structure of brefeldin A esterase, a bacterial homolog of the mammalian hormone-sensitive lipase. Nature Structural & Molecular Biology, 6(4), 340.

    Article  CAS  Google Scholar 

  214. Turner, J. M., et al. (2002). Biochemical characterization and structural analysis of a highly proficient cocaine esterase. Biochemistry, 41(41), 12297–12307.

    Article  CAS  PubMed  Google Scholar 

  215. Ravin, N., Mardanov, A., & Skryabin, K. (2015). Metagenomics as a tool for the investigation of uncultured microorganisms. Russian Journal of Genetics, 51(5), 431–439.

    Article  CAS  Google Scholar 

  216. Culligan, E. P., et al. (2014). Combined metagenomic and phenomic approaches identify a novel salt tolerance gene from the human gut microbiome. Frontiers in Microbiology, 5, 189.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Tourlousse, D. M., et al. (2013). Sensitive and substrate-specific detection of metabolically active microorganisms in natural microbial consortia using community isotope arrays. FEMS Microbiology Letters, 342(1), 70–75.

    Article  CAS  PubMed  Google Scholar 

  218. Podar, M., et al. (2007). Targeted access to the genomes of low-abundance organisms in complex microbial communities. Applied and Environmental Microbiology, 73(10), 3205–3214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Uchiyama, T., et al. (2005). Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nature Biotechnology, 23(1), 88.

    Article  CAS  PubMed  Google Scholar 

  220. Williamson, L. L., et al. (2005). Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor. Applied and Environmental Microbiology, 71(10), 6335–6344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Jia, B., et al. (2013). NeSSM: A next-generation sequencing simulator for metagenomics. PLoS ONE, 8(10), e75448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Richter, D. C., et al. (2008). MetaSim—a sequencing simulator for genomics and metagenomics. PLoS ONE, 3(10), e3373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Angly, F. E., et al. (2012). Grinder: A versatile amplicon and shotgun sequence simulator. Nucleic Acids Research, 40(12), e94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Bachmann, B. O., Van Lanen, S. G., & Baltz, R. H. (2014). Microbial genome mining for accelerated natural products discovery: Is a renaissance in the making? Journal of Industrial Microbiology and Biotechnology, 41(2), 175–184.

    Article  CAS  PubMed  Google Scholar 

  225. Baltz, R. H. (2017). Gifted microbes for genome mining and natural product discovery. Journal of Industrial Microbiology and Biotechnology, 44(4–5), 573–588.

    Article  CAS  PubMed  Google Scholar 

  226. Katz, L., & Baltz, R. H. (2016). Natural product discovery: Past, present, and future. Journal of Industrial Microbiology and Biotechnology, 43(2–3), 155–176.

    Article  CAS  PubMed  Google Scholar 

  227. Oliynyk, M., et al. (2007). Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nature Biotechnology, 25(4), 447.

    Article  CAS  PubMed  Google Scholar 

  228. Barka, E. A., et al. (2016). Taxonomy, physiology, and natural products of Actinobacteria. Microbiology and Molecular Biology Reviews, 80(1), 1–43.

    Article  PubMed  Google Scholar 

  229. Baltz, R. H. (2017). Molecular beacons to identify gifted microbes for genome mining. The Journal of antibiotics, 70(5), 639.

    Article  CAS  PubMed  Google Scholar 

  230. Ziemert, N., Alanjary, M., & Weber, T. (2016). The evolution of genome mining in microbes: A review. Natural product reports, 33(8), 988–1005.

    Article  CAS  PubMed  Google Scholar 

  231. Medema, M. H., et al. (2015). Minimum information about a biosynthetic gene cluster. Nature Chemical Biology, 11(9), 625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Luo, X., Yu, H., & Xu, J. (2012). Genomic data mining: An efficient way to find new and better enzymes. Enzyme Eng, 1, 104–108.

    Article  Google Scholar 

  233. Karan, R., Capes, M. D., & DasSarma, S. (2012). Function and biotechnology of extremophilic enzymes in low water activity. Aquatic Biosystems, 8(1), 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Klenk, H.-P., et al. (2004). Phylogenomics of hyperthermophilic Archaea and Bacteria. London: Portland Press Limited.

    Book  Google Scholar 

  235. Kumar, L., Awasthi, G., & Singh, B. (2011). Extremophiles: A novel source of industrially important enzymes. Biotechnology, 10(2), 121–135.

    Article  CAS  Google Scholar 

  236. Gomes, J., & Steiner, W. (2004). The biocatalytic potential of extremophiles and extremozymes. Food technology and Biotechnology, 42(4), 223–235.

    CAS  Google Scholar 

  237. Bowers, K. J., Mesbah, N. M., & Wiegel, J. (2009). Biodiversity of poly-extremophilic Bacteria: Does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline systems, 5(1), 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Liszka, M. J., et al. (2012). Nature versus nurture: developing enzymes that function under extreme conditions. Annual Review of Chemical and Biomolecular Engineering, 3, 77–102.

    Article  CAS  PubMed  Google Scholar 

  239. Joshua, A., et al. (2017). Draft genome sequence of Bacillus licheniformis strain YNP1-TSU isolated from whiterock springs in Yellowstone National Park. Genome announcements, 5(9), e01496-16.

    Article  Google Scholar 

  240. Pikuta, E. V., Hoover, R. B., & Tang, J. (2007). Microbial extremophiles at the limits of life. Critical Reviews in Microbiology, 33(3), 183–209.

    Article  CAS  PubMed  Google Scholar 

  241. Blöchl, E., et al. (1997). Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 C. Extremophiles, 1(1), 14–21.

    Article  PubMed  Google Scholar 

  242. Cowan, D. A. (2004). The upper temperature for life–where do we draw the line? Trends in Microbiology, 12(2), 58–60.

    Article  CAS  Google Scholar 

  243. Takai, K., et al. (2008). Cell proliferation at 122 C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proceedings of the National Academy of Sciences USA, 105(31), 10949–10954.

    Article  Google Scholar 

  244. Atomi, H., Sato, T., & Kanai, T. (2011). Application of hyperthermophiles and their enzymes. Current Opinion in Biotechnology, 22(5), 618–626.

    Article  CAS  PubMed  Google Scholar 

  245. Sarmiento, F., Peralta, R., & Blamey, J. M. (2015). Cold and hot extremozymes: Industrial relevance and current trends. Frontiers in bioengineering and biotechnology, 3, 148.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Mykytczuk, N. C., et al. (2013). Bacterial growth at − 15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. The ISME Journal, 7(6), 1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Georlette, D., et al. (2004). Some like it cold: biocatalysis at low temperatures. FEMS Microbiology Reviews, 28(1), 25–42.

    Article  CAS  PubMed  Google Scholar 

  248. Cavicchioli, R., et al. (2002). Low-temperature extremophiles and their applications. Current Opinion in Biotechnology, 13(3), 253–261.

    Article  CAS  PubMed  Google Scholar 

  249. Demirjian, D. C., Morı́s-Varas, F., & Cassidy, C. S. (2001). Enzymes from extremophiles. Current opinion in chemical Biology, 5(2), 144–151.

    Article  CAS  PubMed  Google Scholar 

  250. van den Burg, B., & Eijsink, V. G. (2002). Selection of mutations for increased protein stability. Current Opinion in Biotechnology, 13(4), 333–337.

    Article  PubMed  Google Scholar 

  251. Margesin, R., et al. (2003). Cold-adapted microorganisms: adaptation strategies and biotechnological potential. Encyclopedia of Environmental Microbiology. https://doi.org/10.1002/0471263397.env150.

    Article  Google Scholar 

  252. Feller, G., & Gerday, C. (2003). Psychrophilic enzymes: Hot topics in cold adaptation. Nature Reviews Microbiology, 1(3), 200.

    Article  CAS  PubMed  Google Scholar 

  253. Chen, Z.-W., et al. (2007). Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates. Applied Microbiology and Biotechnology, 74(3), 688–698.

    Article  CAS  PubMed  Google Scholar 

  254. Van Den Burg, B. (2003). Extremophiles as a source for novel enzymes. Current Opinion in Microbiology, 6(3), 213–218.

    Article  CAS  PubMed  Google Scholar 

  255. Gomes, I., Gomes, J., & Steiner, W. (2003). Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: Production and partial characterization. Bioresource Technology, 90(2), 207–214.

    Article  CAS  PubMed  Google Scholar 

  256. Mukhopadhyay, A., Dasgupta, A. K., & Chakrabarti, K. (2015). Enhanced functionality and stabilization of a cold active laccase using nanotechnology based activation-immobilization. Bioresource Technology, 179, 573–584.

    Article  CAS  PubMed  Google Scholar 

  257. Sanchez, S., & Demain, A. L. (2017). Useful microbial enzymes: An introduction. In G. Brahmachari (Ed.), Biotechnology of microbial enzymes (pp. 1–11). San Deigo: Academic Press.

    Google Scholar 

  258. Konwarh, R., et al. (2009). Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase. Nanotechnology, 20(22), 225107.

    Article  CAS  PubMed  Google Scholar 

  259. Neethirajan, S., & Jayas, D. S. (2011). Nanotechnology for the food and bioprocessing industries. Food and Bioprocess Technology, 4(1), 39–47.

    Article  CAS  Google Scholar 

  260. van Dijk, L., et al. (2018). Molecular machines for catalysis. Nature Reviews Chemistry, 2, 0117.

    Article  CAS  Google Scholar 

  261. Singh, B., & Singh, B. (2007). Biotechnology expanding horizons. Ludhiana: Kalyani Publishers.

    Google Scholar 

  262. Homaei, A. (2015). Enzyme immobilization and its application in the food industry. Advances in Food Biotechnology, 9, 145–164.

    Article  Google Scholar 

  263. Pandey, P., et al. (2007). Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. Langmuir, 23(6), 3333–3337.

    Article  CAS  PubMed  Google Scholar 

  264. Kalkan, N. A., et al. (2012). Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. Journal of Applied Polymer Science, 123(2), 707–716.

    Article  CAS  Google Scholar 

  265. Ansari, S. A., et al. (2011). Designing and surface modification of zinc oxide nanoparticles for biomedical applications. Food and Chemical Toxicology, 49(9), 2107–2115.

    Article  CAS  PubMed  Google Scholar 

  266. Huang, S.-H., Liao, M.-H., & Chen, D.-H. (2003). Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnology Progress, 19(3), 1095–1100.

    Article  CAS  PubMed  Google Scholar 

  267. Miletić, N., et al. (2010). Immobilization of Candida antarctica lipase B on polystyrene nanoparticles. Macromolecular Rapid Communications, 31(1), 71–74.

    Article  CAS  PubMed  Google Scholar 

  268. Namdeo, M., & Bajpai, S. K. (2009). Immobilization of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. Journal of Molecular Catalysis. B, Enzymatic, 59(1), 134–139.

    Article  CAS  Google Scholar 

  269. Prakasham, R. S., et al. (2007). Novel synthesis of ferric impregnated silica nanoparticles and their evaluation as a matrix for enzyme immobilization. The Journal of Physical Chemistry C, 111(10), 3842–3847.

    Article  CAS  Google Scholar 

  270. Lin, J., Qu, W., & Zhang, S. (2007). Disposable biosensor based on enzyme immobilized on Au-chitosan-modified indium tin oxide electrode with flow injection amperometric analysis. Analytical Biochemistry, 360(2), 288–293.

    Article  CAS  PubMed  Google Scholar 

  271. Sahoo, B., Sahu, S. K., & Pramanik, P. (2011). A novel method for the immobilization of urease on phosphonate grafted iron oxide nanoparticle. Journal of Molecular Catalysis. B, Enzymatic, 69(3), 95–102.

    Article  CAS  Google Scholar 

  272. Ahmad, R., & Sardar, M. (2014). Immobilization of cellulase on TiO2 nanoparticles by physical and covalent methods: a comparative study. Indian Journal of Biochemistry & Biophysics, 51(4), 314–320.

    CAS  Google Scholar 

  273. Kouassi, G. K., Irudayaraj, J., & McCarty, G. (2005). Examination of Cholesterol oxidase attachment to magnetic nanoparticles. Journal of Nanobiotechnology, 3(1), 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Ahmad, R., Mishra, A., & Sardar, M. (2014). Simultaneous immobilization and refolding of heat treated enzymes on TiO2 nanoparticles. Advanced Science, Engineering and Medicine, 6, 1264–1268.

    Article  CAS  Google Scholar 

  275. Shih, Y.-H., et al. (2012). Trypsin-immobilized metal-organic framework as a biocatalyst in proteomics analysis. ChemPlusChem, 77(11), 982–986.

    Article  CAS  Google Scholar 

  276. Park, J.-M., et al. (2013). Immobilization of lysozyme-CLEA onto electrospun chitosan nanofiber for effective antibacterial applications. International Journal of Biological Macromolecules, 54, 37–43.

    Article  CAS  PubMed  Google Scholar 

  277. Ahmad, R., Mishra, A., & Sardar, M. (2013). Peroxidase-TiO2 nanobioconjugates for the removal of phenols and dyes from aqueous solutions. Advanced Science, Engineering and Medicine, 5, 1020–1025.

    Article  CAS  Google Scholar 

  278. Husain, Q. (2018). Nanocarriers immobilized proteases and their industrial applications: An overview. Journal of Nanoscience and Nanotechnology, 18(1), 486–499.

    Article  CAS  PubMed  Google Scholar 

  279. Nguyen, H. H., & Kim, M. (2017). An overview of techniques in enzyme immobilization. Applied Science and Convergence Technology, 26(6), 157–163.

    Article  Google Scholar 

  280. Cordeiro, A. L., Lenk, T., & Werner, C. (2011). Immobilization of Bacillus licheniformis α-amylase onto reactive polymer films. Journal of Biotechnology, 154(4), 216–221.

    Article  CAS  PubMed  Google Scholar 

  281. Cunha, A. G., et al. (2008). Immobilization of yarrowia lipolytica lipase—a comparison of stability of physical adsorption and covalent attachment techniques. Applied Biochemistry and Biotechnology, 146(1), 49–56.

    Article  CAS  PubMed  Google Scholar 

  282. Cabrera-Padilla, R. Y., et al. (2012). Immobilization of Candida rugosa lipase on poly(3-hydroxybutyrate-co-hydroxyvalerate): a new eco-friendly support. Journal of Industrial Microbiology and Biotechnology, 39(2), 289–298.

    Article  CAS  PubMed  Google Scholar 

  283. Szymańska, K., Bryjak, J., & Jarzębski, A. B. (2009). Immobilization of invertase on mesoporous silicas to obtain hyper active biocatalysts. Topics in Catalysis, 52(8), 1030–1036.

    Article  CAS  Google Scholar 

  284. Terrasan, C. R. F., et al. (2017). Immobilization and stabilization of beta-xylosidases from Penicillium janczewskii. Applied Biochemistry and Biotechnology, 182(1), 349–366.

    Article  CAS  PubMed  Google Scholar 

  285. Tsai, C.-T., & Meyer, A. (2014). Enzymatic cellulose hydrolysis: Enzyme reusability and visualization of β-glucosidase immobilized in calcium alginate. Molecules, 19(12), 19390–19406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Wen, H., et al. (2011). Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase. Microchimica Acta, 175(3–4), 283–289.

    Article  CAS  Google Scholar 

  287. Wang, Z.-G., et al. (2009). Enzyme immobilization on electrospun polymer nanofibers: An overview. Journal of Molecular Catalysis. B, Enzymatic, 56(4), 189–195.

    Article  CAS  Google Scholar 

  288. Jegannathan, K. R., et al. (2010). Production of biodiesel from palm oil using liquid core lipase encapsulated in κ-carrageenan. Fuel, 89(9), 2272–2277.

    Article  CAS  Google Scholar 

  289. Bai, Y.-X., et al. (2006). Covalent immobilization of triacylglycerol lipase onto functionalized nanoscale SiO2 spheres. Process Biochemistry, 41(4), 770–777.

    Article  CAS  Google Scholar 

  290. Mukhopadhyay, A., Dasgupta, A. K., & Chakrabarti, K. (2013). Thermostability, pH stability and dye degrading activity of a bacterial laccase are enhanced in the presence of Cu2O nanoparticles. Bioresource Technology, 127, 25–36.

    Article  CAS  PubMed  Google Scholar 

  291. Desai, S., & Nityanand, C. (2011). Microbial laccases and their applications: A review. Asian J Biotechnol, 3(2), 98–124.

    Article  CAS  Google Scholar 

  292. Ganesan, R., et al. (2011). Direct nanoimprinting of metal oxides by in situ thermal co-polymerization of their methacrylates. Journal of Materials Chemistry, 21(12), 4484–4492.

    Article  CAS  Google Scholar 

  293. Jang, J.-W., Park, B., & Nettikadan, S. (2014). Generation of plasmonic Au nanostructures in the visible wavelength using two-dimensional parallel dip-pen nanolithography. Nanoscale, 6(14), 7912–7916.

    Article  CAS  PubMed  Google Scholar 

  294. Yun, J. M., et al. (2013). Local pH-responsive diazoketo-functionalized photoresist for multicomponent protein patterning. ACS Applied Materials & Interfaces, 5(20), 10253–10259.

    Article  CAS  Google Scholar 

  295. Ionescu, R. E., Marks, R. S., & Gheber, L. A. (2003). Nanolithography using protease etching of protein surfaces. Nano Letters, 3(12), 1639–1642.

    Article  CAS  Google Scholar 

  296. Lockhart, J. N., Hmelo, A. B., & Harth, E. (2018). Electron beam lithography of poly(glycidol) nanogels for immobilization of a three-enzyme cascade. Polymer Chemistry, 9(5), 637–645.

    Article  CAS  Google Scholar 

  297. Mao, Z., et al. (2014). A high throughput, high resolution enzymatic lithography process: effect of crystallite size, moisture and enzyme concentration. Biomacromolecules, 15, 4627–4636.

    Article  CAS  PubMed  Google Scholar 

  298. Wei, H., & Wang, E. (2013). Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chemical Society Reviews, 42(14), 6060–6093.

    Article  CAS  PubMed  Google Scholar 

  299. Xie, X., Xu, W., & Liu, X. (2012). Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification. Accounts of Chemical Research, 45(9), 1511–1520.

    Article  CAS  PubMed  Google Scholar 

  300. Lin, Y., Ren, J., & Qu, X. (2014). Catalytically active nanomaterials: A promising candidate for artificial enzymes. Accounts of Chemical Research, 47(4), 1097–1105.

    Article  CAS  PubMed  Google Scholar 

  301. Zhou, Y., et al. (2017). Filling in the gaps between nanozymes and enzymes: Challenges and opportunities. Bioconjugate Chemistry, 28(12), 2903–2909.

    Article  CAS  PubMed  Google Scholar 

  302. Gao, L., et al. (2007). Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2, 577.

    Article  CAS  PubMed  Google Scholar 

  303. Korsvik, C., et al. (2007). Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chemical Communications, 10, 1056–1058.

    Article  CAS  Google Scholar 

  304. Köhler, V., et al. (2012). Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nature Chemistry, 5, 93.

    Article  CAS  PubMed  Google Scholar 

  305. Dhall, A., & Self, W. (2018). Cerium oxide nanoparticles: A brief review of their synthesis methods and biomedical applications. Antioxidants, 7(8), 97.

    Article  CAS  PubMed Central  Google Scholar 

  306. Wilner, O. I., et al. (2009). Enzyme cascades activated on topologically programmed DNA scaffolds. Nature Nanotechnology, 4, 249.

    Article  CAS  PubMed  Google Scholar 

  307. Mahmoudi, M., et al. (2011). Effect of nanoparticles on the cell life cycle. Chemical Reviews, 111(5), 3407–3432.

    Article  CAS  PubMed  Google Scholar 

  308. Horie, M., et al. (2012). In vitro evaluation of cellular response induced by manufactured nanoparticles. Chemical Research in Toxicology, 25(3), 605–619.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suping Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapa, S., Li, H., OHair, J. et al. Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial Perspectives. Mol Biotechnol 61, 579–601 (2019). https://doi.org/10.1007/s12033-019-00187-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00187-1

Keywords

Navigation