Skip to main content

Advertisement

Log in

Laccase applications in biofuels production: current status and future prospects

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The desire to reduce dependence on the ever diminishing fossil fuel reserves coupled with the impetus towards green energy has seen increased research in biofuels as alternative sources of energy. Lignocellulose materials are one of the most promising feedstocks for advanced biofuels production. However, their utilisation is dependent on the efficient hydrolysis of polysaccharides, which in part is dependent on cost-effective and benign pretreatment of biomass to remove or modify lignin and release or expose sugars to hydrolytic enzymes. Laccase is one of the enzymes that are being investigated not only for potential use as pretreatment agents in biofuel production, mainly as a delignifying enzyme, but also as a biotechnological tool for removal of inhibitors (mainly phenolic) of subsequent enzymatic processes. The current review discusses the major advances in the application of laccase as a potential pretreatment strategy, the underlying principles as well as directions for future research in the search for better enzyme-based technologies for biofuel production. Future perspectives could include synergy between enzymes that may be required for optimal results and the adoption of the biorefinery concept in line with the move towards the global implementation of the bioeconomy strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adelakun OE, Kudanga T, Parker A, Green IR, Le Roes-Hill M, Burton SG (2012) Laccase-catalyzed dimerization of ferulic acid amplifies antioxidant activity. J Mol Catal B: Enzym 74:29–35

    CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    CAS  PubMed  Google Scholar 

  • Amirta R, Tanabe T, Watanabe T, Honda Y, Kuwahara M, Watanabe T (2006) Methane fermentation of Japanese cedar wood pretreated with a white rot fungus, Ceriporiopsis subvermispora. J Biotechnol 123:71–77

    CAS  PubMed  Google Scholar 

  • Andreu G, Vidal T (2011) Effects of laccase-natural mediator systems on kenaf pulp. Bioresour Technol 102:5932–5937

    CAS  PubMed  Google Scholar 

  • Aracri E, Colom JF, Vidal T (2009) Application of laccase-natural mediator systems to sisal pulp: an effective approach to biobleaching or functionalizing pulp fibres? Bioresour Technol 100:5911–5916

    CAS  PubMed  Google Scholar 

  • Arora DS, Sharma RK (2010) Ligninolytic fungal laccases and their biotechnological applications. Appl Biochem Biotechnol 160:1760–1788

    CAS  Google Scholar 

  • Asgher M, Shahid M, Kamal S, Iqbal HMN (2014) Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. J Mol Catal B: Enzym 101:56–66

    CAS  Google Scholar 

  • Balakshin M, Capanema E, Chang H, Jameel H (2011) Quantification of lignin–carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233:1097–1110

    CAS  PubMed  Google Scholar 

  • Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242

    CAS  PubMed  Google Scholar 

  • Bensah EC, Mensah M (2013) Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. Int J Chem Eng 2013:1–21

    Google Scholar 

  • Bourbonnais R, Rochefort D, Paice MG, Leech D (2001) Development of stable redox complexes to mediate delignification of Kraft pulp by laccase. In: Argyropoulos DS (ed) Oxidative delignification chemistry. ACS Symposium Series 785. American Chemical Society, Washington, DC, pp 391–399

    Google Scholar 

  • Breen A, Singleton FL (1999) Fungi in lignocellulose breakdown and biopulping. Curr Opin Biotechnol 10:252–258

    CAS  PubMed  Google Scholar 

  • Brijwani K, Rigdon A, Vadlani PV (2010) Fungal laccases: production, function, and applications in food processing. Enzym Res 2010:1–10

    Google Scholar 

  • Bruni E (2010) Improved anaerobic digestion of energy crops and agricultural residues. PhD thesis, Technical University of Denmark

  • Bruni E, Jensen AP, Angelidaki I (2010) Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour Technol 101:8713–8717

    CAS  PubMed  Google Scholar 

  • Burton SG, Le Roes-Hill M (2008) Oxidizing enzymes in multi-step biotransformation processes. In: Garcia-Junceda E (ed) Multi-step enzyme catalysis: Biotransformations and chemoenzymatic synthesis. Wiley-VCH, Weinheim, pp 41–60

    Google Scholar 

  • Burton SG, Cowan DA, Woodley JM (2002) The search for the ideal biocatalyst. Nat Biotechnol 20:37–45

    CAS  PubMed  Google Scholar 

  • Camarero S, Galletti GC, Martínez AT (1997) Demonstration of in situ oxidative degradation of lignin side-chains by two white-rot fungi using analytical pyrolysis of methylated wheat straw. Rapid Commun Mass Spectrom 11:331–334

    CAS  Google Scholar 

  • Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705

    PubMed  Google Scholar 

  • Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98:1947–1950

    CAS  PubMed  Google Scholar 

  • Chang VS, Holtzapple MT (2000) Fundamental factors affecting enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37

    PubMed  Google Scholar 

  • Chang K-L, Thitikorn-amorn J, Chen S-H, Hsieh J-F, Ratanakhanokchai K, Huang P-J, Lin T-C, Chen S-T (2011) Improving the remaining activity of lignocellulolytic enzymes by membrane entrapment. Bioresour Technol 102:519–523

    CAS  PubMed  Google Scholar 

  • Chen Y, Sarkanen S (2003) Macromolecular lignin replication—a mechanistic working hypothesis. Phytochem Rev 2:235–255

    CAS  Google Scholar 

  • Chen Y, Sarkanen S (2010) Macromolecular replication during lignin biosynthesis. Phytochemistry 71:453–462

    CAS  PubMed  Google Scholar 

  • Chen Q, Marshall MN, Geib SM, Tien M, Richard TL (2012) Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover. Bioresour Technol 117:186–192

    CAS  PubMed  Google Scholar 

  • Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150

    CAS  PubMed  Google Scholar 

  • Claus H, Faber G, Konig H (2002) Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol 59:672–678

    CAS  PubMed  Google Scholar 

  • Crestini C, Melone F, Saladino R (2011) Novel multienzyme oxidative biocatalyst for lignin bioprocessing. Bioorg Med Chem 19:5071–5078

    CAS  PubMed  Google Scholar 

  • DeMartini JD, Pattathil S, Avci U, Szekalski K, Mazumder K, Hahn MG, Wyman CE (2011) Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production. Energy Environ Sci 4:4332–4339

    CAS  Google Scholar 

  • Desai SS, Nityanand C (2011) Microbial laccases and their applications: a review. Asian J Biotechnol 3:98–124

    CAS  Google Scholar 

  • Dias AA, Freitas GS, Marques GSM, Sampaio A, Fraga IS, Rodrigues MAM, Evtuguin DV, Bezerra RMF (2010) Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresour Technol 101:6045–6050

    CAS  PubMed  Google Scholar 

  • Ding SY, Liu YS, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338:1055–1060

    CAS  PubMed  Google Scholar 

  • Dinis MJ, Bezerra RMF, Nunes F, Dias AA, Guedes CV, Ferreira LMM, Cone JW, Marques GSM, Barros ARN, Rodrigues MAM (2009) Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresour Technol 100:4829–4835

    CAS  PubMed  Google Scholar 

  • Du X (2013) Deepening the insights of lignin structure: Lignin–carbohydrate complex (LCC) fractionation and characterization and Kraft lignin amination. Dissertation, KTH Royal Institute of Technology

  • Du X, Maria E, Martín E, Li J (2013a) Improvement of kraft pulp bleaching by treatments with laccase, urea, and refining. Holzforschung 67:651–658

    CAS  Google Scholar 

  • Du X, Li J, Gellerstedt G, Rencoret J, Del Río JC, Martínez AT, Gutiérrez A (2013b) Understanding pulp delignification by laccase-mediator systems through isolation and characterization of lignin–carbohydrate complexes. Biomacromolecules 14:3073–3080

    CAS  PubMed  Google Scholar 

  • Du X, Pérez-Boada M, Fernández C, Rencoret J, del Río JC, Jiménez-Barbero J, Li J, Gutiérrez A, Martínez AT (2014) Analysis of lignin–carbohydrate and lignin–lignin linkages after hydrolase treatment of xylan–lignin, glucomannan–lignin and glucan–lignin complexes from spruce wood. Planta 239:1079–1090

    CAS  PubMed  Google Scholar 

  • Durán N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B 28:83–99

    Google Scholar 

  • Durán N, Rosa MA, D’Annibale A, Gianfreda L (2002) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb Technol 31:907–931

    Google Scholar 

  • Dwivedi UN, Singh P, Pandey VP, Kumar A (2011) Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal B: Enzym 68:117–128

    CAS  Google Scholar 

  • Ede RM, Kilpeläinen I (1995) Homo- and hetero-nuclear 2D NMR techniques—unambiguous structural probes for non-cyclic benzyl aryl ethers in soluble lignin samples. Res Chem Intermed 21:313–328

    CAS  Google Scholar 

  • Esteghlalian AR, Svivastava V, Gilkes N, Gregg DJ, Saddler JN (2001) An overview of factors influencing the enzymatic hydrolysis of lignocellulosic feedstocks. In: Himmel ME, Baker W, Saddler JN (eds) Glycosyl hydrolases for biomass conversion. ACS, Washington, pp 100–111

    Google Scholar 

  • Eugenio ME, Miranda J, Martin-Sampedro R, Villar JC (2010b) Influence of laccase bleaching process variables on bleached pulps properties. In: Proceeding of VI Iberoamerican Congress on Pulp and Paper Research (CIADICYP), Lisboa, Portugal, pp 160–161

  • Eugenio ME, Santos SM, Carbajo JM, Martín JA, Martín-Sampedro R, González AE, Villar JC (2010b) Kraft pulp biobleaching using an extracellular enzymatic fluid produced by Pycnoporus sanguineus. Bioresour Technol 101:1866–1870

    CAS  PubMed  Google Scholar 

  • Fabbrini M, Galli C, Gentili P (2002) Comparing the catalytic efficiency of some mediators of laccase. J Mol Catal B: Enzym 16:231–240

    CAS  Google Scholar 

  • Fillat A, Colom JF, Vidal T (2010) A new approach to the biobleaching of flax pulp with laccase using natural mediators. Bioresour Technol 101:4104–4110

    CAS  PubMed  Google Scholar 

  • Gamble GR, Snook ME, Henrikson G, Akin DE (2000) Phenolic constituents in flax bast tissue and inhibition of cellulase and pectinase. Biotechnol Lett 22:741–746

    CAS  Google Scholar 

  • Ge H, Gao Y, Hong Y, Zhang M, Xiao Y, Teng M, Niu L (2010) Structure of native laccase B from Trametes sp. AH28–2. Acta Crystallogr F66:254–258

    Google Scholar 

  • Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385

    CAS  PubMed  Google Scholar 

  • Gregg D, Saddler JN (1996) A techno-economic assessment of the pretreatment and fractionation steps of a biomass-to-ethanol process. Appl Biochem Biotechnol 57–58:711–727

    Google Scholar 

  • Guillén F, Muñoz C, Gomez-Toribio V, Martínez AT, Martínez MJ (2000) Oxygen activation during oxidation of methoxyhydroquinones by laccase from Pleurotus eryngii. Appl Environ Microbiol 66:170–175

    PubMed Central  PubMed  Google Scholar 

  • Gutiérrez A, Rencoret J, Cadena EM, Rico A, Barth D, del Río JC, Martínez ÁT (2012) Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks. Bioresour Technol 119:114–122

    PubMed  Google Scholar 

  • Hammel KE, Kapich AN, Jensen KA Jr, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb Technol 30:445–453

    CAS  Google Scholar 

  • Haykir I (2009) A comparative study on lignocellulose pretreatments for bioethanol production from cotton stalk. New Biotechnol 25(Suppl 1):S253–S254

    Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    CAS  PubMed  Google Scholar 

  • Johannes C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66:2524–2528

    Google Scholar 

  • Jönsson LJ, Palmqvist E, Nilvebrant NO, Hahn-Hägerdal B (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49:691–697

    Google Scholar 

  • Jung HJG, Jorgensen MA, Linn JG, Engels FM (2000) Impact of accessibility and chemical composition on cell wall polysaccharide degradability of maize and lucerne stems. J Sci Food Agric 80:419–427

    CAS  Google Scholar 

  • Jurado M, Prieto A, Martínez-Alcalá A, Martínez ÁT, Martinez MJ (2009) Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresour Technol 100:6378–6384

    CAS  PubMed  Google Scholar 

  • Kalyani D, Dhiman SS, Kim H, Jeya M, Kim I-W, Lee J-K (2012) Characterization of a novel laccase from the isolated Coltricia perennis and its application to detoxification of biomass. Process Biochem 47:671–678

    CAS  Google Scholar 

  • Kaparaju P, Felby C (2010) Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover. Bioresour Technol 101:3175–3181

    CAS  PubMed  Google Scholar 

  • Karhunen P, Rummakko P, Sipilä J, Brunow G, Kilpeläinen I (1995a) Dibenzodioxocins; a novel type of linkage in softwood lignins. Tetrahedron Lett 36:169–170

    CAS  Google Scholar 

  • Karhunen P, Rummakko P, Sipilä J, Brunow G, Kilpeläinen I (1995b) The formation of dibenzodioxocin structures by oxidative coupling. A model reaction for lignin biosynthesis. Tetrahedron Lett 36:4501–4504

    CAS  Google Scholar 

  • Kawai S, Umezawa T, Higuchi T (1988a) Degradation mechanisms of phenolic beta-1 lignin substructure model compounds by laccase of Coriolus versicolor. Arch Biochem Biophys 262:99–110

    CAS  PubMed  Google Scholar 

  • Kawai S, Umezawa T, Shimada M, Higuchi T (1988b) Aromatic ring cleavage of 4,6-di(tert-butyl)guaiacol, a phenolic lignin model compound, by laccase of Coriolus versicolor. FEBS Lett 236:309–311

    CAS  PubMed  Google Scholar 

  • Kawai S, Nakagawa M, Ohashi H (2002) Degradation mechanism of a nonphenolic b-O-4 lignin model dimer by Trametes versicolor laccase in the presence of 1-hydroxybenzotriozole. Enzym Microb Technol 30:482–489

    CAS  Google Scholar 

  • Kilpeläinen I, Sipilä J, Brunow G, Lundquist K, Ede RM (1994) Application of two-dimensional NMR spectroscopy to wood lignin structure determination and identification of some minor structural units of hard- and softwood lignins. J Agric Food Chem 42:2790–2794

    Google Scholar 

  • Kolb M, Sieber V, Amann M, Faulstich M, Schieder D (2012) Removal of monomer delignification products by laccase from Trametes versicolor. Bioresour Technol 104:298–304

    CAS  PubMed  Google Scholar 

  • Kramer KJ, Kanost MR, Hopkins TL, Jiang H, Zhu YC, Xu R, Kerwin JL, Turecek F (2001) Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron 57:385–392

    CAS  Google Scholar 

  • Kudanga T, Nugroho Prasetyo E, Sipila J, Eberl A, Nyanhongo GS, Guebitz G (2009) Coupling of aromatic amines onto syringylglycerol-guaiacylether using Bacillus SF spore laccase: a model for functionalisation of lignin-based materials. J Mol Catal B: Enzym 61:143–149

    CAS  Google Scholar 

  • Kudanga T, Nugroho Prasetyo E, Sipila J, Guebitz GM, Nyanhongo GS (2010a) Reactivity of long chain alkylamines to lignin moieties: implications on hydrophobicity of lignocellulose materials. J Biotechnol 149:81–87

    CAS  PubMed  Google Scholar 

  • Kudanga T, Nugroho Prasetyo E, Sipila J, Nyanhongo GS, Guebitz G (2010b) Enzymatic grafting of functional molecules to the lignin model dibenzodioxocin and lignocellulose material. Enzyme Microb Technol 46:272–280

    CAS  Google Scholar 

  • Kudanga T, Nugroho Prasetyo E, Widsten P, Kandelbauer A, Jury S, Heathcote C, Sipilä J, Weber H, Nyanhongo GS, Guebitz GM (2010c) Laccase-catalyzed covalent coupling of fluorophenols increases lignocellulose surface hydrophobicity. Bioresour Technol 101:2793–2799

    CAS  PubMed  Google Scholar 

  • Kudanga T, Burton SG, Nyanhongo GS, Guebitz GM (2011a) Versatility of oxidoreductases in the remediation of environmental pollutants. Front Biosci (Elite Ed) 4:1127–1149

    Google Scholar 

  • Kudanga T, Nyanhongo GS, Guebitz GM, Burton SG (2011b) Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzyme Microb Technol 48:195–208

    CAS  PubMed  Google Scholar 

  • Kuhad RC, Mehta G, Gupta R, Sharma KK (2010) Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 34:1189–1194

    CAS  Google Scholar 

  • Kumar L, Arantes V, Chandra R, Saddler J (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 103:201–208

    CAS  PubMed  Google Scholar 

  • Kunamneni A, Camarero S, Garcia-Burgos C, Plou FJ, Ballesteros A, Alcalde M (2008a) Engineering and applications of fungal laccases for organic synthesis. Microb Cell Fact 7:32–48

    PubMed Central  PubMed  Google Scholar 

  • Kunamneni A, Plou FJ, Ballesteros A, Alcalde M (2008b) Laccases and their applications: a patent review. Recent Pat Biotechnol 2:10–24

    CAS  PubMed  Google Scholar 

  • Larsson S, Cassland P, Jönsson LJ (2001) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67:1163–1170

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J-W, Koo B-W, Choi J-W, Choi D-H, Choi I-G (2008) Evaluation of waste mushroom logs as a potential biomass resource for the production of bioethanol. Bioresour Technol 99:2736–2741

    CAS  PubMed  Google Scholar 

  • Lee K-M, Kalyani D, Tiwari MK, Kim T-S, Dhiman SS, Lee J-K, Kim I-W (2012) Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour Technol 123:636–645

    CAS  PubMed  Google Scholar 

  • Leontievsky AA, Myasodeva NM, Pozdnyakova NN, Golovleva LA (1997a) Yellow laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators. FEBS Lett 413:446–448

    CAS  PubMed  Google Scholar 

  • Leontievsky AA, Vares T, Lankinen P, Shergill JK, Pozdnyakova NN, Myasodeva NM, Kalkkinen N, Golovleva LA, Cammack R, Thurston CF, Hatakka A (1997b) Blue and yellow laccases of ligninolytic fungi. FEMS Microbiol Lett 156:9–14

    CAS  PubMed  Google Scholar 

  • Liu J, Wang ML, Tonnis B, Habteselassie M, Liao X, Huang Q (2013) Fungal pretreatment of switchgrass for improved saccharification and simultaneous enzyme production. Bioresour Technol 135:39–45

    CAS  PubMed  Google Scholar 

  • Lu C, Wang H, Luo Y, Guo L (2010) An efficient system for pre-delignification of gramineous biofuel feedstock in vitro: Application of a laccase from Pycnoporus sanguineus H275. Process Biochem 45:1141–1147

    CAS  Google Scholar 

  • Ludwig D, Amann M, Hirth T, Rupp S, Zibek S (2013) Development and optimization of single and combined detoxification processes to improve the fermentability of lignocellulose hydrolysates. Bioresour Technol 133:455–461

    CAS  PubMed  Google Scholar 

  • Luna-Acosta A, Rosenfeld E, Amari M, Fruitier-Arnaudin I, Bustamante P, Thomas-Guyon H (2010) First evidence of laccase activity in the Pacific oyster Crassostrea gigas. Fish Shellfish Immunol 28:719–726

    CAS  PubMed  Google Scholar 

  • Machczynski MC, Vijgenboom E, Sanya B, Canters GW (2004) Characterization of SLAC: a small laccase from Streptomyces coelicolor with the unprecedented activity. Protein Sci 13:2388–2397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Madhavi V, Lele SS (2009) Laccase: properties and applications. BioResources 4:1694–1717

    Google Scholar 

  • Majeau JA, Brar SK, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 101:2331–2350

    CAS  PubMed  Google Scholar 

  • Martínez ÁT, Ruiz-Dueñas FJ, Martínez MJ, del Río JC, Gutiérrez A (2009) Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol 20:348–357

    PubMed  Google Scholar 

  • Martín-Sampedro R, Eugenio ME, Villar JC (2011a) Biobleaching of Eucalyptus globulus kraft pulps: comparison between pulps obtained from exploded and non-exploded chips. Bioresour Technol 102:4530–4535

    PubMed  Google Scholar 

  • Martín-Sampedro R, Eugenio ME, Carbajo JM, Villar JC (2011b) Combination of steam explosion and laccase-mediator treatments prior to Eucalyptus globulus kraft pulping. Bioresour Technol 102:7183–7189

    PubMed  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    CAS  PubMed  Google Scholar 

  • Mikolasch A, Schauer F (2009) Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 82:605–624

    CAS  PubMed  Google Scholar 

  • Minussi RC, Pastore GM, Durán N (2002) Potential applications of laccase in the food industry. Trends Food Sci Technol 13:205–216

    CAS  Google Scholar 

  • Moilanen U, Kellock M, Galkin S, Viikari L (2011) The laccase-catalyzed modification of lignin for enzymatic hydrolysis. Enzyme Microb Technol 49:492–498

    CAS  PubMed  Google Scholar 

  • Moldes D, Díaz M, Tzanov T, Vidal T (2008) Comparative study of the efficiency of synthetic and natural mediators in laccase-assisted bleaching of eucalyptus kraft pulp. Bioresour Technol 99:7959–7965

    CAS  PubMed  Google Scholar 

  • Moldes D, Cadena EM, Vidal T (2010) Biobleaching of eucalypt kraft pulp with a two laccase-mediator stages sequence. Bioresour Technol 101:6924–6929

    CAS  PubMed  Google Scholar 

  • Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjman M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93

    Google Scholar 

  • Moreno AD, Ibarra D, Fernández JL, Ballesteros M (2012) Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresour Technol 106:101–109

    CAS  PubMed  Google Scholar 

  • Moreno AD, Ibarra D, Ballesteros I, Fernández JL, Ballesteros M (2013a) Ethanol from laccase-detoxified lignocellulose by the thermotolerant yeast Kluyveromyces marxianus—effects of steam pretreatment conditions, process configurations and substrate loadings. Biochem Eng J 79:94–103

    CAS  Google Scholar 

  • Moreno AD, Ibarra D, Ballesteros I, González A, Ballesteros M (2013b) Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase. Bioresour Technol 135:239–245

    CAS  PubMed  Google Scholar 

  • Moreno AD, Tomás-Pejó E, Ibarrac D, Ballesteros M, Olsson L (2013c) In situ laccase treatment enhances the fermentability of steam-exploded wheat straw in SSCF processes at high dry matter consistencies. Bioresour Technol 143:337–343

    CAS  PubMed  Google Scholar 

  • Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AI (2007a) “Blue” Laccases. Biochemistry (Mosc) 72:1136–1150

    CAS  Google Scholar 

  • Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YI (2007b) Laccase–mediator systems and their applications: a review. Appl Biochem Microbiol 43:523–535

    CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay M, Kuila A, Tuli DK, Banerjee R (2011) Enzymatic depolymerization of Ricinus communis, a potential lignocellulosic for improved saccharification. Biomass Bioenergy 35:3584–3591

    CAS  Google Scholar 

  • Nakanishi A, Kuroda K, Ueda M (2012) Direct fermentation of newspaper after laccase-treatment using yeast codisplaying endoglucanase, cellobiohydrolase, and β-glucosidase. Renew Energy 44:199–205

    CAS  Google Scholar 

  • Nyanhongo GS, Gübitz G, Sukyai P, Leitner C, Haltrich D, Ludwig R (2007) Oxidoreductases from Trametes spp. in Biotechnology: a wealth of catalytic activity. Food Technol Biotechnol 45:250–268

    CAS  Google Scholar 

  • Okuda N, Soneura M, Ninomiya K, Katakura Y, Shioya S (2008) Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production. J Biosci Bioeng 106:128–133

    CAS  PubMed  Google Scholar 

  • Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2010) Uses of laccases in the food industry. Enzym Res 2010:1–8

    Google Scholar 

  • Palonen H, Viikari L (2004) Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol Bioeng 86:550–557

    CAS  PubMed  Google Scholar 

  • Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107:65–72

    CAS  PubMed  Google Scholar 

  • Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31:20–31

    CAS  PubMed  Google Scholar 

  • Pérez J, Muñoz-Dorado J, de la Rubia T, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    PubMed  Google Scholar 

  • Plácido J, Imam T, Capareda S (2013) Evaluation of ligninolytic enzymes, ultrasonication and liquid hot water as pretreatments for bioethanol production from cotton gin trash. Bioresour Technol 139:203–208

    PubMed  Google Scholar 

  • Pollard DJ, Woodley JM (2007) Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol 25:66–73

    CAS  PubMed  Google Scholar 

  • Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6:15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qiu W, Chen H (2012) Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment. Bioresour Technol 118:8–12

    CAS  PubMed  Google Scholar 

  • Rana S, Tiwari R, Arora A, Singh S, Kaushik R, Saxena AK, Dutta SC, Nain L (2013) Prospecting Parthenium sp. pretreated with Trametes hirsuta, as a potential bioethanol feedstock. Biocatal Agric Biotechnol 2:152–158

    Google Scholar 

  • Rico A, Rencoret J, del Río JC, Martínez AT, Gutiérrez A (2014) Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol Biofuels 7:6

    PubMed Central  PubMed  Google Scholar 

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    CAS  PubMed  Google Scholar 

  • Rodríguez-Couto S, Toca-Herrera JL (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513

    PubMed  Google Scholar 

  • Rogalski J, Leonowicz A (2004) Microbial enzymes: Production and applications: Laccases. In: Pandey A (ed) Concise encyclopedia of bioresource technology. The Haworth press, Binghamton, pp 533–542

    Google Scholar 

  • Sakakibara A (1980) A structural model of softwood lignin. Wood Sci Technol 14:89–100

    CAS  Google Scholar 

  • Salvachúa D, Prieto A, López-Abelairas M, Lu-Chau T, Martínez ÁT, Martínez MJ (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102:7500–7506

    PubMed  Google Scholar 

  • Saritha M, Arora A, Singh S, Nain L (2013) Streptomyces griseorubens mediated delignification of paddy straw for improved enzymatic saccharification yields. Bioresour Technol 135:12–17

    CAS  PubMed  Google Scholar 

  • Sirim D, Wagner F, Wang L, Schmid RD, Pleiss J (2011) The Laccase Engineering Database: a classification and analysis system for laccases and related multicopper oxidases. Database 2011:Article ID bar006

  • Sitarz AK, Mikkelsen JD, Højrup P, Meyer AS (2013) Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation. Enzyme Microb Technol 53:378–385

    CAS  PubMed  Google Scholar 

  • Skálová T, Dohnálek J, Østegaard LH, Østegaard PR, Kolenko P, Duškova J, Stepankova A, Hasek J (2009) The structure of the small laccase from Streptomyces coelicolor reveals a link between laccase and nitrate reductases. J Mol Biol 785:1165–1178

    Google Scholar 

  • Strong PJ, Claus H (2011) Laccase: a review of its past and its future in bioremediation. Crit Rev Environ Sci Technol 41:373–434

    Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    CAS  PubMed  Google Scholar 

  • Tabka MG, Herpoël-Gimbert I, Monod F, Asther M, Sigoillot JC (2006) Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme Microb Technol 39:897–902

    CAS  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101:4744–4753

    CAS  PubMed  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    CAS  Google Scholar 

  • Torres-Duarte C, Roman R, Tinoco R, Vazquez-Duhalt R (2009) Halogenated pesticide transformation by a laccase-mediator system. Chemosphere 77:687–692

    CAS  PubMed  Google Scholar 

  • Trovaslet-Leroy M, Jolivalt C, Froment M-T, Brasme B, Lefebvre B, Daveloose D, Nachon F, Masson P (2010) Application of laccase-mediator system (LMS) for the degradation of organophosphorous compounds. Chem Biol Interact 187:393–396

    CAS  PubMed  Google Scholar 

  • Uthandi S, Saad B, Humbard MA, Maupin–Furlow JA (2010) LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Appl Environ Microbiol 76:733–743

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vila C, Bameto AG, Fillat A, Vidal T, Ariza J (2011) Use of thermogravimetric analysis to monitor the effects of natural laccase mediators on flax pulp. Bioresour Technol 102:6554–6561

    CAS  PubMed  Google Scholar 

  • Westermark U, Eriksson KE (1974) Carbohydrate-dependent enzymatic quinone reduction during lignin degradation. Acta Chem Scand B 28:204–208

    CAS  Google Scholar 

  • Widsten P, Kandelbauer A (2008) Laccase applications in the forest products industry: a review. Enzyme Microb Technol 42:293–307

    CAS  Google Scholar 

  • Widsten P, Heathcote C, Kandelbauer A, Guebitz G, Nyanhongo GS, Nugroho Prasetyo E, Kudanga T (2010) Enzymatic surface functionalisation of lignocellulosic materials with tannins for enhancing antibacterial properties. Process Biochem 45:1072–1081

    CAS  Google Scholar 

  • Witayakran S, Ragauskas AJ (2009) Synthetic applications of laccase in green chemistry. Adv Synth Catal 351:1187–1209

    CAS  Google Scholar 

  • Woolridge EM (2014) Mixed enzyme systems for delignification of lignocellulosic biomass. Catalysts 4:1–35

    Google Scholar 

  • Xing M-N, Zhang X-Z, Huang H (2012) Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis. Biotechnol Adv 30:920–929

    CAS  PubMed  Google Scholar 

  • Yamagishi K, Kimura T, Watanabe T (2011) Treatment of rice straw with selected Cyathus stercoreus strains to improve enzymatic saccharification. Bioresour Technol 102:6937–6943

    CAS  PubMed  Google Scholar 

  • Yoshida H (1883) Chemistry of lacquer (Urishi) part 1. J Chem Soc (Tokyo) 43:472–486

    CAS  Google Scholar 

  • Yu J, Zhang J, He J, Liu Z, Yu Z (2009) Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol 100:903–908

    CAS  PubMed  Google Scholar 

  • Zhang J, Qu Y, Xiao P, Wang X, Wang T, He F (2012) Improved biomass saccharification by Trichoderma reesei through heterologous expression of lacA gene from Trametes sp. AH28-2. J Biosci Bioeng 113:697–703

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from the National Research Foundation (NRF)—South Africa and the Cape Peninsula University of Technology Research Funding (URF) is gratefully acknowledged. Any opinion, findings and conclusions or recommendations expressed in this material are those of the author(s) and therefore the NRF does not accept any liability in regard thereto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tukayi Kudanga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudanga, T., Le Roes-Hill, M. Laccase applications in biofuels production: current status and future prospects. Appl Microbiol Biotechnol 98, 6525–6542 (2014). https://doi.org/10.1007/s00253-014-5810-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5810-8

Keywords

Navigation