Skip to main content

Advertisement

Log in

Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies

  • Bacterial and Fungal Pathogenesis - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The assembly of microorganisms over a surface and their ability to develop resistance against available antibiotics are major concerns of interest. To survive against harsh environmental conditions including known antibiotics, the microorganisms form a unique structure, referred to as biofilm. The mechanism of biofilm formation is triggered and regulated by quorum sensing, hostile environmental conditions, nutrient availability, hydrodynamic conditions, cell-to-cell communication, signaling cascades, and secondary messengers. Antibiotic resistance, escape of microbes from the body’s immune system, recalcitrant infections, biofilm-associated deaths, and food spoilage are some of the problems associated with microbial biofilms which pose a threat to humans, veterinary, and food processing sectors. In this review, we focus in detail on biofilm formation, its architecture, composition, genes and signaling cascades involved, and multifold antibiotic resistance exhibited by microorganisms dwelling within biofilms. We also highlight different physical, chemical, and biological biofilm control strategies including those based on plant products. So, this review aims at providing researchers the knowledge regarding recent advances on the mechanisms involved in biofilm formation at the molecular level as well as the emergent method used to get rid of antibiotic-resistant and life-threatening biofilms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P (2016) Biofilm, pathogenesis and prevention—a journey to break the wall: a review. Arch Microbiol 198:1–15. https://doi.org/10.1007/s00203-015-1148-6

    Article  CAS  PubMed  Google Scholar 

  2. Jamal M, Tasneem U, Hussain T, Saadia Andleeb S (2015) Bacterial biofilm: its composition, formation and role in human infections. Res Rev J Microbiol Biotechnol 4:1–15

    CAS  Google Scholar 

  3. Lohse MB, Gulati M, Johnson AD, Nobile CJ (2018) Development and regulation of single-and multi-species Candida albicans biofilms. Nat Rev Microbiol 16:19. https://doi.org/10.1038/nrmicro.2017.107

    Article  CAS  PubMed  Google Scholar 

  4. Castiblanco LF, Sundin GW (2016) New insights on molecular regulation of biofilm formation in plant-associated bacteria. J Integr Plant Biol 58:362–372. https://doi.org/10.1111/jipb.12428

    Article  CAS  PubMed  Google Scholar 

  5. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z (2018) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37:177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013

    Article  CAS  PubMed  Google Scholar 

  6. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerging Infect Dis 8:881. https://doi.org/10.3201/2Feid0809.020063

    Article  Google Scholar 

  7. Donelli G, Vuotto C (2014) Biofilm-based infections in long-term care facilities. Future Microbiol 9:175–188. https://doi.org/10.2217/fmb.13.149

    Article  CAS  PubMed  Google Scholar 

  8. Sharma BK, Saha A, Rahaman L, Bhattacharjee S, Tribedi P (2015) Silver inhibits the biofilm formation of Pseudomonas aeruginosa. Adv Appl Microbiol 5:677–685. https://doi.org/10.4236/aim.2015.510070

    Article  CAS  Google Scholar 

  9. Rather MA, Gupta K, Bardhan P, Borah M, Sarkar A, Eldiehy KS et al (2021) Microbial biofilm: a matter of grave concern for human health and food industry. J Basic Microbiol 61:380–395. https://doi.org/10.1002/jobm.202000678

    Article  PubMed  Google Scholar 

  10. Brinkman CL, Schmidt-Malan SM, Karau MJ, Greenwood-Quaintance K, Hassett DJ, Mandrekar JN, Patel R (2016) Exposure of bacterial biofilms to electrical current leads to cell death mediated in part by reactive oxygen species. PLoS ONE 11(12):e0168595. https://doi.org/10.1371/journal.pone.0168595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Giaouris EE, Simões MV (2018) Pathogenic biofilm formation in the food industry and alternative control strategies. Foodborne Diseases. Elsevier, pp. 309–377. https://doi.org/10.1016/B978-0-12-811444-5.00011-7.

  12. Li XH, Lee JH (2017) Antibiofilm agents: a new perspective for antimicrobial strategy. J Microbiol 55:753–766. https://doi.org/10.1007/s12275-017-7274-x

    Article  CAS  PubMed  Google Scholar 

  13. Parrino B, Schillaci D, Carnevale I, Giovannetti E, Diana P, Cirrincione G et al (2018) Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur J Med Chem 161:154–178. https://doi.org/10.1016/j.ejmech.2018.10.036

    Article  CAS  PubMed  Google Scholar 

  14. Roy R, Tiwari M, Donelli G, Tiwari V (2018) Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 9:522–554. https://doi.org/10.1007/s12275-017-7274-x

    Article  CAS  PubMed  Google Scholar 

  15. Almaaytah A, Mohammed GK, Abualhaijaa A, Al-Balas Q (2017) Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Des Devel Ther 11:3159–3170. https://doi.org/10.2147/2FDDDT.S147450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de la Fuente-Núñez C, Cardoso MH, de Souza CE, Franco OL, Hancock RE (2016) Synthetic antibiofilm peptides. Biochim Biophys Acta 1858:1061–1069. https://doi.org/10.1016/j.bbamem.2015.12.015

    Article  CAS  PubMed  Google Scholar 

  17. Murray J, Muruko T, Gill CI, Kearney MP, Farren D, Scott MG et al (2017) Evaluation of bactericidal and anti-biofilm properties of a novel surface-active organosilane biocide against healthcare associated pathogens and Pseudomonas aeruginosa biofilm. PLoS ONE 12:e0182624. https://doi.org/10.1371/journal.pone.0182624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dostert M, Belanger CR, Hancock RE (2018) Design and assessment of anti-biofilm peptides: steps toward clinical application. J Innate Immun 1-12https://doi.org/10.1159/000491497

  19. Li X, Wu B, Chen H, Nan K, Jin Y, Sun L, Wang B (2018) Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections. J Mater Chem 6:4274–4292. https://doi.org/10.1039/C8TB01245H

    Article  CAS  Google Scholar 

  20. Paula AJ, Koo H (2017) Nanosized building blocks for customizing novel antibiofilm approaches. J Dent Res 96:128–136. https://doi.org/10.1177/2F0022034516679397

    Article  CAS  PubMed  Google Scholar 

  21. Ma H, Darmawan ET, Zhang M, Zhang L, Bryers JD (2013) Development of a poly (ether urethane) system for the controlled release of two novel anti-biofilm agents based on gallium or zinc and its efficacy to prevent bacterial biofilm formation. J Control Release 172:1035–1044. https://doi.org/10.1016/j.jconrel.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  22. Zhao X, Zhao F, Wang J, Zhong N (2017) Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Adv 7:36670–36683. https://doi.org/10.1039/C7RA02497E

    Article  CAS  Google Scholar 

  23. Chandki R, Banthia P, Banthia R (2011) Biofilms: a microbial home. J Indian Soc Periodontol 15:111. https://doi.org/10.4103/2F0972-124X.84377

    Article  PubMed  PubMed Central  Google Scholar 

  24. Haggag W (2010). The role of biofilm exopolysaccharides on biocontrol of plant diseases. Biopolymers. IntechOpen, pp. 271–284 https://doi.org/10.5772/10266.

  25. Banerjee P, Singh M, Sharma V (2015) Biofilm formation: a comprehensive review. Int J Pharm Res Health Sci 3:556–560

    CAS  Google Scholar 

  26. Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52. https://doi.org/10.1128/MMBR.00043-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Armbruster CR, Parsek MR (2018) New insight into the early stages of biofilm formation. Proc Natl Acad Sci USA 115:4317–4319. https://doi.org/10.1073/pnas.1804084115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim H (2015) Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 7:493–512. https://doi.org/10.4155/fmc.15.6

    Article  CAS  PubMed  Google Scholar 

  29. Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N (2016) Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem 80:7–12. https://doi.org/10.1080/09168451.2015.1058701

    Article  CAS  PubMed  Google Scholar 

  30. Otto M (2013) Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med 64:175–188. https://doi.org/10.1146/annurev-med-042711-140023

    Article  CAS  PubMed  Google Scholar 

  31. Costerton JW, Stewart PS, Greenberg E (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322. https://doi.org/10.1126/science.284.5418.1318

    Article  CAS  PubMed  Google Scholar 

  32. McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S (2012) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10:39. https://doi.org/10.1038/nrmicro2695

    Article  CAS  Google Scholar 

  33. Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci USA 104:11197–11202. https://doi.org/10.1073/pnas.0704624104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Evans LV (2003) Biofilms: recent advances in their study and control, 1st edn. CRC Press

    Google Scholar 

  35. Flemming HC, Wingender J, Griebe T, Mayer C (2000) Physico-chemical properties of biofilms. Biofilms: recent advances in their study and control, CRC press, pp. 19–34.

  36. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623. https://doi.org/10.1038/nrmicro2415

    Article  CAS  PubMed  Google Scholar 

  37. Lembre P, Lorentz C, Di Martino P (2012) Exopolysaccharides of the biofilm matrix: a complex biophysical world. The complex world of polysaccharides. InTech., pp. 371–392. https://doi.org/10.5772/51213.

  38. Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578. https://doi.org/10.1038/nrmicro2354

    Article  CAS  PubMed  Google Scholar 

  39. Limoli DH, Jones CJ, Wozniak DJ (2015) Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol.Spectr. 3https://doi.org/10.1128/microbiolspec.MB-0011-2014

  40. Fong JN, Yildiz FH (2015) Biofilm matrix proteins. Microbiol.Spectr. 3https://doi.org/10.1038/nrmicro2415

  41. Martí M, Trotonda MP, Tormo-Más MÁ, Vergara-Irigaray M, Cheung AL, Lasa I, Penadés JR (2010) Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus. Microbes Infect 12:55–64. https://doi.org/10.1016/j.micinf.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  42. Kaplan JB, Ragunath C, Ramasubbu N, Fine DH (2003) Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous β-hexosaminidase activity. J Bacteriol 185:4693–4698. https://doi.org/10.1128/JB.185.16.4693-4698.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, Tsang LH, Smeltzer MS, Horswill AR, Bayles KW (2009) Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS ONE 4:e5822. https://doi.org/10.1371/journal.pone.0005822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nijland R, Hall MJ, Burgess JG (2010) Dispersal of biofilms by secreted, matrix degrading, bacterial DNase. PLoS ONE 5:e15668. https://doi.org/10.1371/journal.pone.0015668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiao Y, D’haeseleer P, Dill BD, Shah M, VerBerkmoes NC, Hettich RL, Banfield JF, Thelen MP (2011) Identification of biofilm matrix-associated proteins from an acid mine drainage microbial community. Appl Environ Microbiol 77:5230–5237. https://doi.org/10.1128/AEM.03005-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Toyofuku M, Roschitzki B, Riedel K, Eberl L (2012) Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix. J Proteome Res 11:4906–4915. https://doi.org/10.1021/pr300395j

    Article  CAS  PubMed  Google Scholar 

  47. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128. https://doi.org/10.1111/j.1365-2958.2005.05008.x

    Article  CAS  PubMed  Google Scholar 

  48. Montanaro L, Poggi A, Visai L, Ravaioli S, Campoccia D, Speziale P, Arciola CR (2011) Extracellular DNA in biofilms. Int J Artif Organs 34:824–831. https://doi.org/10.5301/2Fijao.5000051

    Article  CAS  PubMed  Google Scholar 

  49. Vorkapic D, Pressler K, Schild S (2016) Multifaceted roles of extracellular DNA in bacterial physiology. Curr Genet 62:71–79. https://doi.org/10.1007/s00294-015-0514-x

    Article  CAS  PubMed  Google Scholar 

  50. Wilton M, Charron-Mazenod L, Moore R, Lewenza S (2016) Extracellular DNA acidifies biofilms and induces aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 60:544–553. https://doi.org/10.1128/AAC.01650-15

    Article  CAS  PubMed  Google Scholar 

  51. Ibáñez de Aldecoa AL, Zafra O, González-Pastor JE (2017) Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities. Front Microbiol 8:1390. https://doi.org/10.3389/fmicb.2017.01390

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lethem M, James SL, Marriott C, Burke JF (1990) The origin of DNA associated with mucus glycoproteins in cystic fibrosis sputum. Eur Respir J 3:19–23

    CAS  PubMed  Google Scholar 

  53. Marshall KC, Stout R, Mitchell R (1971) Mechanism of the initial events in the sorption of marine bacteria to surfaces. Microbiology 68:337–348. https://doi.org/10.1099/00221287-68-3-337

    Article  CAS  Google Scholar 

  54. van Loosdrecht MC, Lyklema J, Norde W, Zehnder AJ (1989) Bacterial adhesion: a physicochemical approach. Microb Ecol 17:1–15. https://doi.org/10.1007/BF02025589

    Article  PubMed  Google Scholar 

  55. Rijnaarts HH, Norde W, Bouwer EJ, Lyklema J, Zehnder AJ (1995) Reversibility and mechanism of bacterial adhesion. Colloids Surf B Biointerfaces 4:5–22. https://doi.org/10.1016/0927-7765(94)01146-V

    Article  CAS  Google Scholar 

  56. Okshevsky M, Meyer RL (2015) The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit Rev Microbiol 41:341–352. https://doi.org/10.3109/1040841X.2013.841639

    Article  CAS  PubMed  Google Scholar 

  57. Harmsen M, Lappann M, Knøchel S, Molin S (2010) Role of extracellular DNA during biofilm formation by Listeria monocytogenes. Appl Environ Microbiol 76:2271–2279. https://doi.org/10.1128/AEM.02361-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Neu TR, Poralla K (1988) An amphiphilic polysaccharide from an adhesive Rhodococcus strain. FEMS Microbiol Lett 49:389–392. https://doi.org/10.1016/j.jep.2012.08.045

    Article  CAS  Google Scholar 

  59. Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Appl Environ Microbiol 3:229–236. https://doi.org/10.1046/j.1462-2920.2001.00190.x

    Article  CAS  Google Scholar 

  60. Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci USA 101:16630–16635. https://doi.org/10.1073/pnas.0407460101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kjelleberg S, Givskov M (2007) The biofilm mode of life: mechanisms and adaptations, first ed. Horizon Scientific Press.

  62. Sutherland IW (2001) The biofilm matrix–an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227. https://doi.org/10.1016/S0966-842X(01)02012-1

    Article  CAS  PubMed  Google Scholar 

  63. Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007. https://doi.org/10.1128/AAC.45.4.999-1007.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bridier A, Dubois-Brissonnet F, Boubetra A, Thomas V, Briandet R (2010) The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. J Microbiol Methods 82:64–70. https://doi.org/10.1016/j.mimet.2010.04.006

    Article  CAS  PubMed  Google Scholar 

  65. Rani SA, Pitts B, Beyenal H, Veluchamy RA, Lewandowski Z, Davison WM, Buckingham-Meyer K, Stewart PS (2007) Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. J Bacteriol 189:4223–4233. https://doi.org/10.1128/JB.00107-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lear G, Lewis GD (2012) Microbial biofilms: current research and applications. Horizon Scientific Press.

  67. Danese PN, Pratt LA, Kolter R (2000) Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182:3593–3596. https://doi.org/10.1128/JB.182.12.3593-3596.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595. https://doi.org/10.1046/j.1365-2958.1999.01624.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tielen P, Strathmann M, Jaeger KE, Flemming HC, Wingender J (2005) Alginate acetylation influences initial surface colonization by mucoid Pseudomonas aeruginosa. Microbiol Res 160:165–176. https://doi.org/10.1016/j.micres.2004.11.003

    Article  CAS  PubMed  Google Scholar 

  70. Branda SS, Chu F, Kearns DB, Losick R, Kolter R (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238. https://doi.org/10.1111/j.1365-2958.2005.05020.x

    Article  CAS  PubMed  Google Scholar 

  71. McCourt J, O’Halloran DP, McCarthy H, O’Gara JP, Geoghegan JA (2014) Fibronectin-binding proteins are required for biofilm formation by community-associated methicillin-resistant Staphylococcus aureus strain LAC. FEMS Microbiol Lett 353:157–164. https://doi.org/10.1111/1574-6968.12424

    Article  CAS  PubMed  Google Scholar 

  72. Liang X, Chen YY, Ruiz T, Wu H (2011) New cell surface protein involved in biofilm formation by Streptococcus parasanguinis. Infect Immun 79:3239–3248. https://doi.org/10.1128/IAI.00029-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Manfiolli AO, Dos Reis TF, de Assis LJ, de Castro PA, Silva LP, Hori JI, Walker LA, Munro CA, Rajendran R, Ramage G, Goldman GH (2018) Mitogen activated protein kinases (MAPK) and protein phosphatases are involved in Aspergillus fumigatus adhesion and biofilm formation. Cell Surf 1:43–56. https://doi.org/10.1016/j.tcsw.2018.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Matsumoto-Nakano M (2018) Role of Streptococcus mutans surface proteins for biofilm formation. Jpn Dent Sci Rev 54:22–29. https://doi.org/10.1016/j.jdsr.2017.08.002

    Article  PubMed  Google Scholar 

  75. Ye Y, Ling N, Gao J, Zhang X, Zhang M, Tong L, Zeng H, Zhang J, Wu Q (2018) Roles of outer membrane protein W (OmpW) on survival, morphology, and biofilm formation under NaCl stresses in Cronobacter sakazakii. J Dairy Sci 101:3844–3850. https://doi.org/10.3168/jds.2017-13791

    Article  CAS  PubMed  Google Scholar 

  76. Dutta A, Bhattacharyya S, Kundu A, Dutta D, Das AK (2016) Macroscopic amyloid fiber formation by staphylococcal biofilm associated SuhB protein. Biophys Chem 217:32–41. https://doi.org/10.1016/j.bpc.2016.07.006

    Article  CAS  PubMed  Google Scholar 

  77. Arenas J, Tommassen J (2017) Meningococcal biofilm formation: let’s stick together. Trends Microbiol 25:113–124. https://doi.org/10.1016/j.tim.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  78. Bandekar D, Chouhan OP, Mohapatra S, Hazra M, Hazra S, Biswas S (2017) Putative protein VC0395_0300 from Vibrio cholerae is a diguanylate cyclase with a role in biofilm formation. Microbiol Res 202:61–70. https://doi.org/10.1016/j.micres.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  79. Kim AR, Ahn KB, Kim HY, Seo HS, Yun CH, Han SH (2016) Serine-rich repeat adhesin gordonii surface protein B is important for Streptococcus gordonii biofilm formation. J Endod 42:1767–1772. https://doi.org/10.1016/j.joen.2016.08.016

    Article  PubMed  Google Scholar 

  80. Bandara M, Skehel JM, Kadioglu A, Collinson I, Nobbs AH, Blocker AJ, Jenkinson HF (2017) The accessory Sec system (SecY2A2) in Streptococcus pneumoniae is involved in export of pneumolysin toxin, adhesion and biofilm formation. Microbes Infect 19:402–412. https://doi.org/10.1016/j.micinf.2017.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Horng YT, Wang CJ, Chung WT, Chao HJ, Chen YY, Soo PC (2018) Phosphoenolpyruvate phosphotransferase system components positively regulate Klebsiella biofilm formation. J Microbiol Immunol Infect 51:174–183. https://doi.org/10.1016/j.jmii.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  82. Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116. https://doi.org/10.1126/science.1121357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. https://doi.org/10.1016/j.biotechadv.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  84. Lee K, Yoon SS (2017) Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness. J Microbiol Biotechnol 27:1053–1064. https://doi.org/10.4014/jmb.1611.11056

    Article  CAS  PubMed  Google Scholar 

  85. Johnson MR, Montero CI, Conners SB, Shockley KR, Bridger SL, Kelly RM (2005) Population density-dependent regulation of exopolysaccharide formation in the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol 55:664–674. https://doi.org/10.1111/j.1365-2958.2004.04419.x

    Article  CAS  PubMed  Google Scholar 

  86. Li Z, Chen Y, Liu D, Zhao N, Cheng H, Ren H, Guo T, Niu H, Zhuang W, Wu J, Ying H (2015) Involvement of glycolysis/gluconeogenesis and signaling regulatory pathways in Saccharomyces cerevisiae biofilms during fermentation. Front Microbiol 6:139. https://doi.org/10.3389/fmicb.2015.00139

    Article  PubMed  PubMed Central  Google Scholar 

  87. Finelli A, Gallant CV, Jarvi K, Burrows LL (2003) Use of in-biofilm expression technology to identify genes involved in Pseudomonas aeruginosa biofilm development. J Bacteriol 185:2700–2710. https://doi.org/10.1128/JB.185.9.2700-2710.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Feraco D, Blaha M, Khan S, Green JM, Plotkin BJ (2016) Host environmental signals and effects on biofilm formation. Microb Pathog 99:253–263. https://doi.org/10.1016/j.micpath.2016.08.015

    Article  CAS  PubMed  Google Scholar 

  89. Yeh YC, Wang HY, Lan CY (2018) Candida albicans Aro1 affects cell wall integrity, biofilm formation and virulence. J Microbiol Immunol Infect. https://doi.org/10.1016/j.jmii.2018.04.002

    Article  PubMed  Google Scholar 

  90. Chambers JR, Sauer K (2013) Small RNAs and their role in biofilm formation. Trends Microbiol 21:39–49. https://doi.org/10.1016/j.tim.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  91. Monteiro C, Papenfort K, Hentrich K, Ahmad I, Le Guyon S, Reimann R, Grantcharova N, Römling U (2012) Hfq and Hfq-dependent small RNAs are major contributors to multicellular development in Salmonella enterica serovar Typhimurium. RNA Biol 9:489–502. https://doi.org/10.4161/rna.19682

    Article  CAS  PubMed  Google Scholar 

  92. Mikkelsen H, Sivaneson M, Filloux A (2011) Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Appl Environ Microbiol 13:1666–1681. https://doi.org/10.1111/j.1462-2920.2011.02495.x

    Article  CAS  Google Scholar 

  93. Shao Y, Bassler BL (2012) Quorum-sensing non-coding small RNAs use unique pairing regions to differentially control mRNA targets. Mol Microbiol 83:599–611. https://doi.org/10.1111/j.1365-2958.2011.07959.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zheng H, Kim J, Liew M, Yan JK, Herrera O, Bok JW, Kelleher NL, Keller NP, Wang Y (2015) Redox metabolites signal polymicrobial biofilm development via the NapA oxidative stress cascade in Aspergillus. Curr Biol 25:29–37. https://doi.org/10.1016/j.cub.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  95. Xue T, Ni J, Shang F, Chen X, Zhang M (2015) Autoinducer-2 increases biofilm formation via an ica-and bhp-dependent manner in Staphylococcus epidermidis RP62A. Microbes Infect 17:345–352. https://doi.org/10.1016/j.micinf.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  96. Wotanis CK, Brennan WP III, Angotti AD, Villa EA, Zayner JP, Mozina AN, Rutkovsky AC, Sobe RC, Bond WG, Karatan E (2017) Relative contributions of norspermidine synthesis and signaling pathways to the regulation of Vibrio cholerae biofilm formation. PLoS ONE 12:e0186291. https://doi.org/10.1371/journal.pone.0186291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xie T, Wu Q, Zhang J, Xu X, Cheng J (2017) Comparison of Vibrio parahaemolyticus isolates from aquatic products and clinical by antibiotic susceptibility, virulence, and molecular characterisation. Food Control 71:315–321. https://doi.org/10.1016/j.foodcont.2016.06.046

    Article  CAS  Google Scholar 

  98. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332. https://doi.org/10.1016/j.ijantimicag.2009.12.011

    Article  CAS  PubMed  Google Scholar 

  99. Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. J Med Microbiol 292:107–113. https://doi.org/10.1078/1438-4221-00196

    Article  CAS  Google Scholar 

  100. Hall CW, Mah TF (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Lett 41:276–301. https://doi.org/10.1093/femsre/fux010

    Article  CAS  Google Scholar 

  101. Ju X, Li J, Zhu M, Lu Z, Lv F, Zhu X, Bie X (2018) Effect of the luxS gene on biofilm formation and antibiotic resistance by Salmonella serovar Dublin. Food Res Int 107:385–393. https://doi.org/10.1016/j.foodres.2018.02.039

    Article  CAS  PubMed  Google Scholar 

  102. Hu WS, Kim H, Koo OK (2018) Molecular genotyping, biofilm formation and antibiotic resistance of enterotoxigenic Clostridium perfringens isolated from meat supplied to school cafeterias in South Korea. Anaerobe 52:115–121. https://doi.org/10.1016/j.anaerobe.2018.06.011

    Article  CAS  PubMed  Google Scholar 

  103. Guo XP, Yang Y, Lu DP, Niu ZS, Feng JN, Chen YR, Tou FY, Garner E, Xu J, Liu M, Hochella MF Jr (2018) Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary. Water Res 129:277–286. https://doi.org/10.1016/j.watres.2017.11.029

    Article  CAS  PubMed  Google Scholar 

  104. Aslantaş Ö, Demir C (2016) Investigation of the antibiotic resistance and biofilm-forming ability of Staphylococcus aureus from subclinical bovine mastitis cases. J Dairy Sci 99:8607–8613. https://doi.org/10.3168/jds.2016-11310

    Article  CAS  PubMed  Google Scholar 

  105. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745. https://doi.org/10.1146/annurev.mi.49.100195.003431

    Article  CAS  PubMed  Google Scholar 

  106. Totani T, Nishiuchi Y, Tateishi Y, Yoshida Y, Kitanaka H, Niki M, Kaneko Y, Matsumoto S (2017) Effects of nutritional and ambient oxygen condition on biofilm formation in Mycobacterium avium subsp. hominissuis via altered glycolipid expression. Sci Rep 7:41775. https://doi.org/10.1038/srep41775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, Pitts B, Stewart PS (2004) Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70:6188–6196. https://doi.org/10.1128/AEM.70.10.6188-6196.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40. https://doi.org/10.1016/j.tim.2004.11.010

    Article  CAS  PubMed  Google Scholar 

  109. von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, Savelkoul PH, Wolffs PF (2016) Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 7:173. https://doi.org/10.3389/fmicb.2016.00173

    Article  Google Scholar 

  110. Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EP, de la Cruz F (2010) Mobility of plasmids. Microbiol Mol Biol Rev 74:434–452. https://doi.org/10.1128/MMBR.00020-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Guglielmini J, de La Cruz F, Rocha EP (2012) Evolution of conjugation and type IV secretion systems. Mol Biol Evol 30:315–331. https://doi.org/10.1093/molbev/mss221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Charpentier X, Polard P, Claverys JP (2012) Induction of competence for genetic transformation by antibiotics: convergent evolution of stress responses in distant bacterial species lacking SOS? Curr Opin Microbiol 15:570–576. https://doi.org/10.1016/j.mib.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  113. Mazaheri Nezhad Fard R, Barton MD, Heuzenroeder MW (2011) Bacteriophage-mediated transduction of antibiotic resistance in Enterococci. Lett Appl Microbiol 52:559–564. https://doi.org/10.1111/j.1472-765X.2011.03043.x

    Article  CAS  PubMed  Google Scholar 

  114. Billard-Pomares T, Fouteau S, Jacquet ME, Roche D, Barbe V, Castellanos M, Bouet JY, Cruveiller S, Médigue C, Blanco J, Clermont O (2014) Characterization of a P1-like bacteriophage carrying an SHV-2 extended-spectrum β-lactamase from an Escherichia coli strain. Antimicrob Agents Chemother 58:6550–6557. https://doi.org/10.1128/AAC.03183-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Madsen JS, Burmølle M, Hansen LH, Sørensen SJ (2012) The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 65:183–195. https://doi.org/10.1111/j.1574-695X.2012.00960.x

    Article  CAS  PubMed  Google Scholar 

  116. Kaplan T (2014) The role of horizontal gene transfer in antibiotic resistance. Eukaryon 10:80–81

    Google Scholar 

  117. Fan Y, Xiao Y, Momeni B, Liu YY (2018) Horizontal gene transfer can help maintain the equilibrium of microbial communities. J Theor Biol 454:53–59. https://doi.org/10.1016/j.jtbi.2018.05.036

    Article  PubMed  Google Scholar 

  118. Jain H, Mulay S, Mullany P (2016) Persistence of endodontic infection and Enterococcus faecalis: role of horizontal gene transfer. Gene Reports 5:112–116. https://doi.org/10.1016/j.genrep.2016.09.010

    Article  Google Scholar 

  119. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13–18. https://doi.org/10.1016/S0378-1097(03)00856-5

    Article  CAS  PubMed  Google Scholar 

  120. Lewis K (2010) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56. https://doi.org/10.1038/nrmicro1557

    Article  CAS  Google Scholar 

  121. Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372. https://doi.org/10.1146/annurev.micro.112408.134306

    Article  CAS  PubMed  Google Scholar 

  122. Zhang Y (2014) Persisters, persistent infections and the Yin-Yang model. Emerg Microbes Infect 3:e3. https://doi.org/10.1038/emi.2014.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kumar A, Alam A, Rani M, Ehtesham NZ, Hasnain SE (2017) Biofilms: survival and defense strategy for pathogens. Int J Med Microbiol 307:481–489. https://doi.org/10.1016/j.ijmm.2017.09.016

    Article  CAS  PubMed  Google Scholar 

  124. Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH, Engebretsen IL, Bayles KW, Horswill AR, Kielian T (2011) Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol 186:6585–6596. https://doi.org/10.4049/jimmunol.1002794

    Article  CAS  PubMed  Google Scholar 

  125. Mulcahy H, Charron-Mazenod L, Lewenza S (2008) Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 4(11):e1000213. https://doi.org/10.1371/journal.ppat.1000213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chiang WC, Nilsson M, Jensen PØ, Høiby N, Nielsen TE, Givskov M, Tolker-Nielsen T (2013) Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 57:2352–2361. https://doi.org/10.1128/AAC.00001-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jakubovics NS, Burgess JG (2015) Extracellular DNA in oral microbial biofilms. Microbes Infect 17:531–537. https://doi.org/10.1016/j.micinf.2015.03.015

    Article  CAS  PubMed  Google Scholar 

  128. Kumar A, Schweizer HP (2005) Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev 57:1486–1513. https://doi.org/10.1016/j.addr.2005.04.004

    Article  CAS  PubMed  Google Scholar 

  129. Singh S, Singh SK, Chowdhury I, Singh R (2017) Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 11:53. https://doi.org/10.2174/2F1874285801711010053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang L, Mah TF (2008) Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 190:4447–4452. https://doi.org/10.1128/JB.01655-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Buroni S, Matthijs N, Spadaro F, Van Acker H, Scoffone VC, Pasca MR, Riccardi G, Coenye T (2014) Differential role of RND efflux pumps in antimicrobial drug resistance of sessile and planktonic Burkholderia cenocepacia cells. Antimicrob Agents Chemother 58:7424–7429. https://doi.org/10.1128/AAC.03800-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wright GD (2005) Bacterial resistance to antibiotics: enzymatic degradation and modification. Antimicrob Agents Chemother 57:1451–1470. https://doi.org/10.1016/j.addr.2005.04.002

    Article  CAS  Google Scholar 

  133. Schroeder M, Brooks BD, Brooks AE (2017) The complex relationship between virulence and antibiotic resistance. Genes (Basel) 8:39. https://doi.org/10.3390/genes8010039

    Article  CAS  Google Scholar 

  134. Anderl JN, Franklin MJ, Stewart PS (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 4:1818–1824. https://doi.org/10.1128/AAC.44.7.1818-1824.2000

    Article  Google Scholar 

  135. Giwercman B, Lambert PA, Rosdahl VT, Shand GH, Heiby N (1990) Rapid emergence of resistance in Pseudomonas aeruginosa in cystic fibrosis patients due to in-vivo selection of stable partially derepressed β-lactamase producing strains. J Antimicrob Chemother 26:247–259. https://doi.org/10.1093/jac/26.2.247

    Article  CAS  PubMed  Google Scholar 

  136. Roilides E, Simitsopoulou M, Katragkou A, Walsh TJ (2015) How biofilms evade host defenses. Microbiol Spectr 3https://doi.org/10.1128/microbiolspec.MB-0012-2014

  137. Leid JG, Shirtliff ME, Costerton JW, Stoodley P (2002) Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 70:6339–6345. https://doi.org/10.1128/IAI.70.11.6339-6345.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cerca N, Jefferson KK, Oliveira R, Pier GB, Azeredo J (2006) Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state. Infect Immun 74:4849–4855. https://doi.org/10.1128/IAI.00230-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jensen ET, Kharazmi A, Lam K, Costerton JW, Høiby N (1990) Human polymorphonuclear leukocyte response to Pseudomonas aeruginosa grown in biofilms. Infect Immun 58:2383–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jensen PØ, Bjarnsholt T, Phipps R, Rasmussen TB, Calum H, Christoffersen L, Moser C, Williams P, Pressler T, Givskov M, Høiby N (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153:1329–1338. https://doi.org/10.1099/mic.0.2006/003863-0

    Article  CAS  PubMed  Google Scholar 

  141. Alhede M, Bjarnsholt T, Givskov M, Alhede M (2014) Pseudomonas aeruginosa biofilms: mechanisms of immune evasion. Advances in applied microbiology. Elsevier, pp. 1–40. https://doi.org/10.1016/B978-0-12-800262-9.00001-9.

  142. Chandra J, McCormick TS, Imamura Y, Mukherjee PK, Ghannoum MA (2007) Interaction of Candida albicans with adherent human peripheral blood mononuclear cells increases C. albicans biofilm formation and results in differential expression of pro-and anti-inflammatory cytokines. Infect Immun 75:2612–2620. https://doi.org/10.1128/IAI.01841-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Le KY, Park MD, Otto M (2018) Immune evasion mechanisms of Staphylococcus epidermidis biofilm infection. Front Microbiol 9:359. https://doi.org/10.3389/fmicb.2018.00359

    Article  PubMed  PubMed Central  Google Scholar 

  144. Van Gennip M, Christensen LD, Alhede M, Phipps R, Jensen PØ, Christophersen L, Pamp SJ, Moser C, Mikkelsen PJ, Koh AY, TOLKER-NIELSEN TI, (2009) Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. APMIS 117:537–546. https://doi.org/10.1111/j.1600-0463.2009.02466.x

    Article  CAS  PubMed  Google Scholar 

  145. Kristian SA, Birkenstock TA, Sauder U, Mack D, Götz F, Landmann R (2008) Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. J Infect Dis 197:1028–1035. https://doi.org/10.1086/528992

    Article  PubMed  Google Scholar 

  146. Chen M, Yu Q, Sun H (2013) Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci 14:18488–18501. https://doi.org/10.3390/ijms140918488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ma Y, Xu Y, Yestrepsky BD, Sorenson RJ, Chen M, Larsen SD, Sun H (2012) Novel inhibitors of Staphylococcus aureus virulence gene expression and biofilm formation. PLoS ONE 7:e47255. https://doi.org/10.1016/j.indcrop.2015.10.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sambanthamoorthy K, Gokhale AA, Lao W, Parashar V, Neiditch MB, Semmelhack MF, Lee I, Waters CM (2011) Identification of a novel benzimidazole that inhibits bacterial biofilm formation in a broad-spectrum manner. Antimicrob Agents Chemother 55:4369–4378. https://doi.org/10.1128/AAC.00583-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Abraham NM, Lamlertthon S, Fowler VG, Jefferson KK (2012) Chelating agents exert distinct effects on biofilm formation in Staphylococcus aureus depending on strain background: role for clumping factor. B J Med Microbiol 61:1062–1070. https://doi.org/10.1099/2Fjmm.0.040758-0

    Article  CAS  PubMed  Google Scholar 

  150. Izano EA, Amarante MA, Kher WB, Kaplan JB (2008) Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74:470–476. https://doi.org/10.1128/AEM.02073-07

    Article  CAS  PubMed  Google Scholar 

  151. Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan JB, Jabbouri S (2007) Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biotechnol 75:125–132. https://doi.org/10.1007/s00253-006-0790-y

    Article  CAS  PubMed  Google Scholar 

  152. Han Q, Song X, Zhang Z, Fu J, Wang X, Malakar PK, Liu H, Pan Y, Zhao Y (2017) Removal of foodborne pathogen biofilms by acidic electrolyzed water. Front Microbiol 8:988. https://doi.org/10.3389/fmicb.2017.00988

    Article  PubMed  PubMed Central  Google Scholar 

  153. van Tilburg BE, Lewenza S, Reckseidler-Zenteno S (2015) Current research approaches to target biofilm infections. Postdoc J 3:36. https://doi.org/10.2174/092986709787909640

    Article  Google Scholar 

  154. De la Fuente-Núñez C, Reffuveille F, Haney EF, Straus SK, Hancock RE (2014) Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 10:e1004152. https://doi.org/10.1371/journal.ppat.1004152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Khalifa L, Brosh Y, Gelman D, Coppenhagen-Glazer S, Beyth S, Poradosu-Cohen R, Que YA, Beyth N, Hazan R (2015) Targeting Enterococcus faecalis biofilms with phage therapy. Appl Environ Microbiol 81:2696–2705. https://doi.org/10.1128/AEM.00096-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Svensson A, Larsson A, Emtenäs H, Hedenström M, Fex T, Hultgren SJ, Pinkner JS, Almqvist F, Kihlberg J (2001) Design and evaluation of pilicides: potential novel antibacterial agents directed against uropathogenic Escherichia coli. ChemBioChem 2:915–918. https://doi.org/10.1002/1439-7633(20011203)2:12%3C915::AIDCBIC915%3E3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  157. Robert III W, EricáBallard T (2008) Inhibition and dispersion of proteobacterial biofilms. Chem. Commun. (Camb.), 1698-1700https://doi.org/10.1039/B719802G

  158. Sadekuzzaman M, Yang S, Mizan MF, Ha SD (2015) Current and recent advanced strategies for combating biofilms. Compr Rev Food Sci Food Saf 14:491–509. https://doi.org/10.1111/1541-4337.12144

    Article  Google Scholar 

  159. Gomes IB, Lemos M, Mathieu L, Simões M, Simões LC (2018) The action of chemical and mechanical stresses on single and dual species biofilm removal of drinking water bacteria. Sci Total Environ 631:987–993. https://doi.org/10.1016/j.scitotenv.2018.03.042

    Article  CAS  PubMed  Google Scholar 

  160. Pires DP, Melo LD, Boas DV, Sillankorva S, Azeredo J (2017) Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol 39:48–56. https://doi.org/10.1016/j.mib.2017.09.004

    Article  CAS  PubMed  Google Scholar 

  161. Ryan EM, Alkawareek MY, Donnelly RF, Gilmore BF (2012) Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol Med Microbiol 65:395–398. https://doi.org/10.1111/j.1574-695X.2012.00977.x

    Article  CAS  PubMed  Google Scholar 

  162. Merino L, Procura F, Trejo FM, Bueno DJ, Golowczyc MA (2017) Biofilm formation by Salmonella sp. in the poultry industry: detection, control and eradication strategies. Food Res Int. https://doi.org/10.1016/j.foodres.2017.11.024

    Article  PubMed  Google Scholar 

  163. Wang H, Wang H, Xing T, Wu N, Xu X, Zhou G (2016) Removal of Salmonella biofilm formed under meat processing environment by surfactant in combination with bio-enzyme. LWT - Food Sci Technol 66:298–304. https://doi.org/10.1016/j.lwt.2015.10.049

    Article  CAS  Google Scholar 

  164. de Oliveira AM, da Silva FM, de Abreu Filho BA, Gomes RG, Bergamasco R (2018) Inhibition and removal of staphylococcal biofilms using Moringa oleifera Lam. aqueous and saline extracts. J Environ Chem Eng 6:2011–2016. https://doi.org/10.1016/j.jece.2018.02.043

    Article  CAS  Google Scholar 

  165. Leary JT, Werger MM, Broach WH, Shaw LN, Santoni BG, Bernasek TL, Lyons ST (2017) Complete eradication of biofilm from orthopedic materials. J Arthroplasty 32:2513–2518. https://doi.org/10.1016/j.arth.2017.03.050

    Article  PubMed  Google Scholar 

  166. Ficai D, Ficai A (2017) Prevention of biofilm formation by material modification. In Biofilms and Implantable Medical Devices (pp. 159–180). Woodhead Publishing. Chapter 7.

  167. Feng G, Cheng Y, Wang SY, Borca-Tasciuc DA, Worobo RW, Moraru CI (2015) Bacterial attachment and biofilm formation on surfaces are reduced by small-diameter nanoscale pores: how small is small enough? NPJ Biofilms Microbiomes 1:15022. https://doi.org/10.1038/npjbiofilms.2015.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lagree K, Mon HH, Mitchell AP, Ducker WA (2018) Impact of surface topography on biofilm formation by Candida albicans. PLoS One 13:e0197925. https://doi.org/10.1371/journal.pone.0197925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gkana EN, Doulgeraki AI, Chorianopoulos NG, Nychas GJ (2017) Anti-adhesion and anti-biofilm potential of organosilane nanoparticles against foodborne pathogens. Front Microbiol 8:1295. https://doi.org/10.3389/fmicb.2017.01295

    Article  PubMed  PubMed Central  Google Scholar 

  170. Liu H, Shukla S, Vera-González N, Tharmaligam N, Mylonakis E, Fuchs BB, Shukla A (2019) Auranofin releasing antibacterial and antibiofilm polyurethane intravascular catheter coatings. Front Cell Infect Microbiol 9:37. https://doi.org/10.3389/fcimb.2019.00037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Nazlı O, Baygar T, Dönmez ÇE, Dere Ö, Uysal Aİ, Aksözek A, Işık C, Aktürk S (2019) Antimicrobial and antibiofilm activity of polyurethane/Hypericum perforatum extract (PHPE) composite. Bioorg Chem 82:224–228. https://doi.org/10.1016/j.bioorg.2018.08.017

    Article  CAS  PubMed  Google Scholar 

  172. Laitman I, Natan M, Banin E, Margel S (2014) Synthesis and characterization of fluoro-modified polypropylene films for inhibition of biofilm formation. Colloids Surf B Biointerfaces 115:8–14. https://doi.org/10.1016/j.colsurfb.2013.11.027

    Article  CAS  PubMed  Google Scholar 

  173. Glatthardt T, de Mello Campos JC, Chamon RC, de Sá Coimbra TF, de Almeida Rocha G, de Melo MAF, Ferreira RBR. (2020) Small molecules produced by commensal Staphylococcus epidermidis disrupt formation of biofilms by Staphylococcus aureus. Appl. Environ. Microbiol. 86(5) https://doi.org/10.1128/AEM.02539-19.

  174. Ahmad I, Husain FM, Maheshwari M, Zahin M (2014) Medicinal plants and phytocompounds: a potential source of novel antibiofilm agents Antibiofilm Agents. Springer, Berlin Heidelberg, pp 205–232. https://doi.org/10.1007/978-3-642-53833-9_10

    Book  Google Scholar 

  175. Song X, Xia YX, He ZD, Zhang HJ (2018) A review of natural products with anti-biofilm activity. Curr Org Chem 22:789–817. https://doi.org/10.2174/1385272821666170620110041

    Article  CAS  Google Scholar 

  176. Koh CL, Sam CK, Yin WF, Tan LY, Krishnan T, Chong YM, Chan KG (2013) Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors 13:6217–6228. https://doi.org/10.3390/s130506217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Borges A, Abreu AC, Dias C, Saavedra MJ, Borges F, Simões M (2016) New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules 21:877. https://doi.org/10.3390/molecules21070877

    Article  CAS  PubMed Central  Google Scholar 

  178. Rather MA, Gupta K, Mandal M. (2020) Inhibition of biofilm and quorum sensing-regulated virulence factors in Pseudomonas aeruginosa by Cuphea carthagenensis (Jacq.) JF Macbr. leaf extract: an in vitro study. J. Ethnopharmacol. 113699. https://doi.org/10.1016/j.jep.2020.113699.

  179. Gupta K, Singh SP, Manhar AK, Saikia D, Namsa ND, Konwar BK, Mandal M (2019) Inhibition of Staphylococcus aureus and Pseudomonas aeruginosa biofilm and virulence by active fraction of Syzygium cumini (L.) Skeels leaf extract: in-vitro and in silico studies. Indian J Microbiol 59(1):13–21. https://doi.org/10.1007/s12088-018-0770-9

    Article  CAS  PubMed  Google Scholar 

  180. Bouyahya A, Dakka N, Et-Touys A, Abrini J, Bakri Y (2017) Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pac J Trop Med 10:729–743. https://doi.org/10.1016/j.apjtm.2017.07.021

    Article  CAS  PubMed  Google Scholar 

  181. Lin MH, Shu JC, Huang HY, Cheng YC (2012) Involvement of iron in biofilm formation by Staphylococcus aureus. PLoS ONE 7:e34388. https://doi.org/10.1371/journal.pone.0034388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Lee JH, Kim YG, Ryu SY, Lee J (2016) Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus. Sci Rep 6:19267. https://doi.org/10.1038/srep19267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kooltheat N, Kamuthachad L, Anthapanya M, Samakchan N, Sranujit RP, Potup P, Ferrante A, Usuwanthim K (2016) Kaffir lime leaves extract inhibits biofilm formation by Streptococcus mutans. Nutr J 32:486–490. https://doi.org/10.1016/j.nut.2015.10.010

    Article  Google Scholar 

  184. Rudrappa T, Bais HP (2008) Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. J Agric Food Chem 56:1955–1962. https://doi.org/10.1021/jf072591j

    Article  CAS  PubMed  Google Scholar 

  185. Truchado P, Giménez-Bastida JA, Larrosa M, Castro-Ibáñez I, Espín JC, Tomás-Barberán FA, García-Conesa MT, Allende A (2012) Inhibition of quorum sensing (QS) in Yersinia enterocolitica by an orange extract rich in glycosylated flavanones. J Agric Food Chem 60:8885–8894. https://doi.org/10.1021/jf301365a

    Article  CAS  PubMed  Google Scholar 

  186. Wysokińska H, Różalski M, Budzyńska A, Więckowska-Szakiel M, Sadowska B, Paszkiewicz M, Kisiel W, Różalska B (2012) Antimicrobial and anti-biofilm properties of new taxodione derivative from hairy roots of Salvia austriaca. Phytomedicine 19:1285–1297. https://doi.org/10.1016/j.phymed.2012.07.016

    Article  CAS  PubMed  Google Scholar 

  187. Kim HS, Park HD (2013) Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14. PLoS ONE 8:e76106. https://doi.org/10.1371/journal.pone.0076106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kim YG, Lee JH, Kim SI, Baek KH, Lee J (2015) Cinnamon bark oil and its components inhibit biofilm formation and toxin production. Int J Food Microbiol 195:30–39. https://doi.org/10.1016/j.ijfoodmicro.2014.11.028

    Article  CAS  PubMed  Google Scholar 

  189. Khan F, Hashmi MU, Khalid N, Hayat MQ, Ikram A, Janjua HA (2016) Controlled assembly of silver nano-fluid in Heliotropium crispum extract: a potent anti-biofilm and bactericidal formulation. Appl Surf Sci 387:317–331. https://doi.org/10.1016/j.apsusc.2016.05.133

    Article  CAS  Google Scholar 

  190. Malaikozhundan B, Vaseeharan B, Vijayakumar S, Sudhakaran R, Gobi N, Shanthini G (2016) Antibacterial and antibiofilm assessment of Momordica charantia fruit extract coated silver nanoparticle. Biocatal Agric Biotechnol 8:189–196. https://doi.org/10.1016/j.bcab.2016.09.007

    Article  Google Scholar 

  191. Hasan S, Danishuddin M, Adil M, Singh K, Verma PK, Khan AU (2012) Efficacy of E. officinalis on the cariogenic properties of Streptococcus mutans: a novel and alternative approach to suppress quorum-sensing mechanism. PLoS One 7:e40319. https://doi.org/10.1371/journal.pone.0040319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Murugan K, Sekar K, Sangeetha S, Ranjitha S, Sohaibani SA (2013) Antibiofilm and quorum sensing inhibitory activity of Achyranthes aspera on cariogenic Streptococcus mutans: an in vitro and in silico study. Pharm Biol 51:728–736. https://doi.org/10.3109/13880209.2013.764330

    Article  CAS  PubMed  Google Scholar 

  193. Jakobsen TH, Bragason SK, Phipps RK, Christensen LD, van Gennip M, Alhede M, Skindersoe M, Larsen TO, Høiby N, Bjarnsholt T, Givskov M (2012) Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Appl Environ Microbiol 78:2410–2421. https://doi.org/10.1128/AEM.05992-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Gupta K, Hazarika SN, Saikia D, Namsa ND, Mandal M (2014) One step green synthesis and anti-microbial and anti-biofilm properties of Psidium guajava L. leaf extract-mediated silver nanoparticles. Mater Lett 125:67–70. https://doi.org/10.1016/j.matlet.2014.03.134

    Article  CAS  Google Scholar 

  195. Gupta K, Barua S, Hazarika SN, Manhar AK, Nath D, Karak N, Mandal M (2014) Green silver nanoparticles: enhanced antimicrobial and antibiofilm activity with effects on DNA replication and cell cytotoxicity. RSC Adv 4(95):52845–52855. https://doi.org/10.1039/C4RA08791G

    Article  CAS  Google Scholar 

  196. Sen S, Chakraborty R (2017) Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: importance, challenges and future. J Tradit Complement Med 7:234–244. https://doi.org/10.1016/j.jtcme.2016.05.006

    Article  PubMed  Google Scholar 

  197. Karunamoorthi K, Jegajeevanram K, Vijayalakshmi J, Mengistie E (2013) Traditional medicinal plants: a source of phytotherapeutic modality in resource-constrained health care settings. Evid Based Complement Alternat Med 18:67–74. https://doi.org/10.1177/2F2156587212460241

    Article  Google Scholar 

  198. Chung PY, Toh YS (2014) Anti-biofilm agents: recent breakthrough against multi-drug resistant Staphylococcus aureus. Pathog Dis 70:231–239. https://doi.org/10.1111/2049-632X.12141

    Article  CAS  PubMed  Google Scholar 

  199. Borges AJ, Saavedra M, Simoes M (2015) Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents. Curr Med Chem 22(21):2590–2614

    Article  CAS  PubMed  Google Scholar 

  200. Lewis K, Ausubel FM (2006) Prospects for plant-derived antibacterials. Nat Biotechnol 24(12):1504–1507. https://doi.org/10.1038/nbt1206-1504

    Article  CAS  PubMed  Google Scholar 

  201. Namasivayam SK, Vivek JM (2016) Anti quorum sensing activities of medicinal plant extracts against quorum sensing mediated virulence factors of Pseudomonas aeruginosa. Pharm Lett 8:412–423. https://doi.org/10.4103/JMAU.JMAU_10_18

    Article  Google Scholar 

Download references

Funding

Financial support was provided by DBT via the DBT NER Twinning Programme vide letter No. BT/PR16149/NER/95/85/ 2015 dated January 19, 2017, and Tezpur University via memo No. DoRD/RIG/10–73/1362-A dated 19/02/2019.

Author information

Authors and Affiliations

Authors

Contributions

Muzamil Ahmad Rather had the idea of the article and drafted it; Muzamil Ahmad Rather and Dr. Kuldeep Gupta did the literature search and data analysis; and the work was critically revised by Prof. Manabendra Mandal.

Corresponding author

Correspondence to Manabendra Mandal.

Ethics declarations

Ethics approval

No human participants and/or animals were used in the study.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Carla Taddei

Highlights

• Biofilm is a safe and antibiotic-resistant home to microorganisms.

• Biofilm formation is a complex and quorum sensing–dependent process.

• Polysaccharides, proteins, eDNA, etc. are the architecture and stability determinants of biofilm.

• Recent advances in physical, chemical, and biological antibiofilm strategies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rather, M.A., Gupta, K. & Mandal, M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol 52, 1701–1718 (2021). https://doi.org/10.1007/s42770-021-00624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00624-x

Keywords

Navigation