Skip to main content
Log in

Molecular Cloning, Characterization, and Expression Analysis of Resistance Gene Candidates in Kaempferia galanga L.

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Majority of the plant disease resistance genes expresses cytoplasmic receptor-like proteins characterized by an N-terminal nucleotide-binding site (NBS) and a leucine-rich repeat (LRR) domain. Degenerative primers based on these conserved motifs were used to isolate NBS type sequences in Kaempferia galanga. Cloning and sequencing identified 12 Kaempferia NBS-type sequences called resistance gene candidates (RGCs) classified into four classes. The amino acid sequences of the RGCs detected the presence of conserved domains, viz., kinase-1a, kinase-2, and hydrophobic GLPL, categorizing them with the NBS–LRR class gene family. Structural and phylogenetic characterization grouped the RGCs with the non-toll interleukin receptor (non-TIR) subclasses of the NBS sequences. Reverse transcription PCR with 10 Kaempferia RGC specific primers revealed 7 out of 10 Kaempferia RGCs to be expressive. The isolation and characterization of Kaempferia RGCs has been reported for the first time in this study. This will provide a starting point towards characterization of candidate resistance genes in Kaempferia and can act as a source pool for disease resistance development in other asexually reproducing plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RGCs:

Resistance gene candidates

RGAs:

Resistance gene analogues

R genes:

Resistance genes

NBS:

Nucleotide-binding sites

References

  1. Sharma, T. R., Madhav, M. S., Singh, B. K., Shanker, P., Jana, T. K., Dalal, V., et al. (2005). High-resolution mapping, cloning and molecular characterization of the gene of rice, which confers resistance to rice blast. Molecular Genetics and Genomics, 274, 569–578.

    Article  CAS  Google Scholar 

  2. Liu, J., Liu, X., Dai, L., & Wang, G. (2007). Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. Journal of Genetics and Genomics, 34(9), 765–776.

    Article  Google Scholar 

  3. Sharma, T. R., Das, A., Kumar, S. P., & Lodha, M. L. (2009). Resistance gene analogues as a tool for rapid identification and cloning of disease resistance genes in plants—A review. Journal of Plant Biochemistry and Biotechnology, 18(1), 01–11.

    CAS  Google Scholar 

  4. Hammond-Kosack, K. E., & Jones, J. D. (1997). Plant disease resistance genes. Annual Review of Plant Physiology—Plant Molecular Biology, 48, 575–607.

    Article  CAS  Google Scholar 

  5. Meyers, B. C., Kozik, A., Griego, A., Kuang, H., & Michelmore, R. W. (2003). Genome wide analysis of NBS–LRR encoding genes in Arabidopsis. Plant Cell, 15, 809–834.

    Article  CAS  Google Scholar 

  6. Richly, E., Kurth, J., & Leister, D. (2002). Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Molecular Biology and Evolution, 19, 76–84.

    Article  CAS  Google Scholar 

  7. Goff, S. A., et al. (2002). A draft sequence of the rice genome (Oryza sativa L. spp japonica). Science, 296, 92–100.

    Article  CAS  Google Scholar 

  8. Meyers, B. C., Dickerman, A. W., Michelmore, R. W., Sivaramakrishnan, S., Sobral, B. W., & Young, N. D. (1999). Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant Journal, 20, 317–332.

    Article  CAS  Google Scholar 

  9. Hulbert, S. H., Webb, C. A., Smith, S. M., & Sun, Q. (2001). Resistance gene complexes: Evolution and utilization. Annual Review of Phytopathology, 39, 285–312.

    Article  CAS  Google Scholar 

  10. Huang, L., Brooks, S. A., Li, W. L., Fellers, J. P., Trick, H. N., & Gill, B. S. (2003). Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploidy genome of bread wheat. Genetics, 164, 655–664.

    CAS  Google Scholar 

  11. Leister, D., Kuth, J., Lurie, D. A., Yano, M., Sasaki, T., Graner, T., et al. (1999). RFLP and physical mapping of resistance gene homologues in rice (O. sativa) and barley (H. vulgare). Theoretical and Applied Genetics, 98, 509–520.

    Article  CAS  Google Scholar 

  12. Seah, S., Sivasithamparam, K., Karakousis, A., & Lagudah, E. S. (1998). Cloning and characterization of a family of disease resistance gene analogs from wheat and barley. Theoretical and Applied Genetics, 97, 937–945.

    Article  CAS  Google Scholar 

  13. Mago, R., Nair, S., & Mohan, M. (1999). Resistance gene analogues from rice: Cloning, sequencing and mapping. Theoretical and Applied Genetics, 99, 50–57.

    Article  CAS  Google Scholar 

  14. Pan, Q., Wendel, J., & Fluhr, R. (2000). Divergent evolution of plant NBS–LRR resistance gene homologues in dicot and cereal genomes. Journal of Molecular Evolution, 50, 203–213.

    CAS  Google Scholar 

  15. Rossi, M., Araujo, P. G., Paulet, F., Garsmeur, O., Dias, V. M., Chen, H., et al. (2003). Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Molecular Genetics and Genomics, 269, 406–419.

    Article  CAS  Google Scholar 

  16. McIntyre, C. L., Casu, R. E., Drenth, J., Knight, D., Whan, V. A., Croft, B., et al. (2005). Resistance gene analogues in sugarcane and sorghum and their association with QTLs for rust resistance. Genome, 48, 391–400.

    Article  CAS  Google Scholar 

  17. Kanazin, V., Marek, L. F., & Shoemaker, R. C. (1996). Resistance gene analogs are conserved and clustered in soybean. Proceedings of the National Academy of Science of the United States of America, 93, 11746–11750.

    Article  CAS  Google Scholar 

  18. Yu, Y. G., Buss, G. R., & Maroof, M. A. (1996). Isolation of a super family of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proceedings of the National Academy of Science of the United States of America, 93, 11751–11756.

    Article  CAS  Google Scholar 

  19. Xiao, W. K., Xu, M. L., Zhao, J. R., Wang, F. G., Li, J. S., & Dai, J. R. (2006). Genome wide isolation of resistance gene analogs in maize (Zea mays L.). Theoretical and Applied Genetics, 113, 63–72.

    Article  CAS  Google Scholar 

  20. Nair, R. A., & Thomas, G. (2007). Isolation, characterization and expression studies of resistance gene candidates (RGCs) from Zingiber spp. Theoretical and Applied Genetics, 116, 123–134.

    Article  CAS  Google Scholar 

  21. Joshi, R. K., Mohanty, S., Subudhi, E., & Nayak, S. (2010). Isolation and characterization of NBS–LRR resistance gene candidates in Curcuma longa cv Surama. Genetics and Molecular Research, 9(3), 1796–1806.

    Article  CAS  Google Scholar 

  22. Rahman, M. M., Amin, M. N., Ahamed, T., Ali, M. R., & Habib, A. (2004). Efficient plant regeneration through somatic embryogenesis from leaf base derived callus of Kaempferia galanga L. Asian Journal of Plant Science, 3(6), 675–678.

    Article  CAS  Google Scholar 

  23. Sulaiman, M. R., Zakaria, Z. A., Duad, I. A., & Hidayat, M. T. (2008). Antinociceptive and anti-inflammatory activities of the aqueous extract of Kaempferia galanga leaves in animal models. Journal of Natural Medicine, 62(2), 221–227.

    Article  CAS  Google Scholar 

  24. Chan, E. W. C., Lim, Y. Y., Wong, S. K., Lim, K. K., Tan, S. P., Lianto, F. S., et al. (2009). Effects of drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113(1), 166–172.

    Article  CAS  Google Scholar 

  25. Shirin, F., Kumar, S., & Mishra, Y. (2000). In vitro plantlet production system for Kaempferia galanga, a rare Indian medicinal herb. Plant Cell, Tissue and Organ Culture, 63(3), 193–197.

    Article  CAS  Google Scholar 

  26. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.

    Article  CAS  Google Scholar 

  27. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  28. Kumar, S., Tamura, K., Jakobsen, I. B., & Nei, M. (2001). MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics, 17, 1244–1245.

    Article  CAS  Google Scholar 

  29. Deloukas and associates. (2001). The DNA sequence and comparative analysis of human chromosome 20. Nature, 414, 865–871.

    Article  Google Scholar 

  30. Lacock, L., Van Niekerk, C., Loots, S., Du Preez, F., & Botha, A. M. (2003). Functional and comparative analysis of expressed sequences from Diuraphis noxia infested wheat obtained utilizing the conserved nucleotide binding site. African Journal of Biotechnology, 2, 75–81.

    CAS  Google Scholar 

  31. Di Gaspero, G., & Cipriani, G. (2002). Resistance gene analogs are candidate markers for disease-resistance genes in grape (Vitis spp.). Theoretical and Applied Genetics, 106, 163–172.

    CAS  Google Scholar 

  32. Lopez, C. E., Acosta, I. F., Jara, C., Pedraza, F., Gaitan-Solis, E., Gallego, G., et al. (2003). Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology, 93, 88–95.

    Article  CAS  Google Scholar 

  33. Totad, A. S., Fakrudin, B., & Kuruvinashetti, M. S. (2005). Isolation and characterization of resistance gene analogs (RGAs) from sorghum (Sorghum bicolor L. Moench). Euphytica, 143, 179–188.

    Article  CAS  Google Scholar 

  34. Quint, M., Dussle, C. M., Mechinger, A. E., & Luebberstedt, T. (2003). Identification of genetically linked RGAs by BAC screening in maize and implications for gene cloning, mapping and MAS. Theoretical and Applied Genetics, 106, 1171–1177.

    CAS  Google Scholar 

  35. Noir, S., Combes, M. C., Anthony, F., & Lashermes, P. (2001). Origin, diversity and evolution of NBS-type disease resistance gene homologues in coffee trees (Coffea L.). Molecular Genetics and Genomics, 265, 654–662.

    Article  CAS  Google Scholar 

  36. Deng, Z., Huang, S., Ling, P., Chen, C., Yu, C., Weber, C., et al. (2000). Cloning and characterization of NBS–LRR class resistance-gene candidate sequences in citrus. Theoretical and Applied Genetics, 101, 814–822.

    Article  CAS  Google Scholar 

  37. He, C. Y., Tian, A. G., Zhang, J. S., Zhang, Z. Y., Gai, J. Y., & Chen, S. Y. (2003). Isolation and characterization of a full-length resistance gene homolog from soybean. Theoretical and Applied Genetics, 106, 786–793.

    CAS  Google Scholar 

  38. Cannon, S. B., Zhu, H., Baumgarten, A. M., Spangler, R., May, G., Cook, D. R., et al. (2002). Diversity, distribution and ancient taxonomic relationships within the TIR and non-TIR NBS–LRR resistance gene subfamilies. Journal of Molecular Evolution, 54, 548–562.

    Article  CAS  Google Scholar 

  39. Bai, J., Pennill, L. A., Ning, J., Lee, S. W., Ramalingam, J., Webb, C. A., et al. (2002). Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Research, 12(12), 1871–1884.

    Article  CAS  Google Scholar 

  40. Zhou, B., Qu, S. H., Liu, G. F., Dolan, M., Sakai, H., Lu, G. D., et al. (2006). The eight amino-acid differences within three leucine-rich repeats between Pi2 and Pizt resistance proteins determine the resistance specificity to Magnaporthe grisea. Molecular Plant-Microbe Interaction, 19, 1216–1228.

    Article  CAS  Google Scholar 

  41. Monosi, B., Wisser, R. J., Pennill, L., & Hulbert, S. H. (2004). Full genome analysis of resistance gene homologues in rice. Theoretical and Applied Genetics, 109, 1434–1447.

    Article  CAS  Google Scholar 

  42. Soriano, J. M., Vilanova, S., Romero, C., Llacer, G., & Badenes, M. L. (2005). Characterization and mapping of NBS–LRR resistance gene analogs in apricot (Prunus armeniaca L.). Theoretical and Applied Genetics, 110, 980–989.

    Article  CAS  Google Scholar 

  43. Mes, J., Van Doorn, A., Wijbrandi, J., Simons, G., Cornelissen, B., & Haring, M. (2000). Expression of the Fusarium resistance gene I-2 colocalizes with the site of fungal containment. Plant Journal, 23, 183–193.

    Article  CAS  Google Scholar 

  44. Peraza-Echeverria, S., Dale, J. L., Harding, R. B., Smith, M. K., & Collet, C. (2008). Characterization of disease resistance gene candidates of the nucleotide binding site (NBS) type from banana and correlation of a transcriptional polymorphism with resistance to Fusarium oxysporum f.sp. cubense race 4. Molecular Breeding, 22, 565–579.

    Article  CAS  Google Scholar 

  45. Wang, Z. X., Yano, M., Yamanouchi, U., Iwamoto, M., Monna, L., Hayasaka, H., et al. (1999). The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant Journal, 19, 55–64.

    Article  Google Scholar 

  46. Fourmann, M., Chariot, F., Froger, N., Delourme, R., & Brunel, D. (2001). Expression, mapping and genetic variability of Brassica napus disease resistance gene analogues. Genome, 44, 1083–1099.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Prof. Manoj Ranjan Nayak, President, Siksha O Anusandhan University for his encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghamitra Nayak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, R.K., Kar, B., Mohanty, S. et al. Molecular Cloning, Characterization, and Expression Analysis of Resistance Gene Candidates in Kaempferia galanga L.. Mol Biotechnol 50, 200–210 (2012). https://doi.org/10.1007/s12033-011-9430-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9430-6

Keywords

Navigation