Skip to main content

Advertisement

Log in

Characterization of disease resistance gene candidates of the nucleotide binding site (NBS) type from banana and correlation of a transcriptional polymorphism with resistance to Fusarium oxysporum f.sp. cubense race 4

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Most plant disease resistance (R) genes encode proteins with a nucleotide binding site and leucine-rich repeat structure (NBS-LRR). In this study, degenerate primers were used to amplify genomic NBS-type sequences from wild banana (Musa acuminata ssp. malaccensis) plants resistant to the fungal pathogen Fusarium oxysporum formae specialis (f. sp.) cubense (FOC) race 4. Five different classes of NBS-type sequences were identified and designated as resistance gene candidates (RGCs). The deduced amino acid sequences of the RGCs revealed the presence of motifs characteristic of the majority of known plant NBS-LRR resistance genes. Structural and phylogenetic analyses grouped the banana RGCs within the non-TIR (homology to Toll/interleukin-1 receptors) subclass of NBS sequences. Southern hybridization showed that each banana RGC is present in low copy number. The expression of the RGCs was assessed by RT-PCR in leaf and root tissues of plants resistant or susceptible to FOC race 4. RGC1, 3 and 5 showed a constitutive expression profile in both resistant and susceptible plants whereas no expression was detected for RGC4. Interestingly, RGC2 expression was found to be associated only to FOC race 4 resistant lines. This finding could assist in the identification of a FOC race 4 resistance gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarts MGM, Hekkert BL, Holub EB, Beynon JL, Stiekema WJ, Pereira A (1998) Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant Microbe Interact 11:251–258

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Ayele-Gedil M, Slabaugh MB, Berry S, Johnson R, Michelmore R, Miller J, Gulya T, Knapp S (2001) Candidate disease resistance genes in sunflower cloned using conserved nucleotide-binding site motifs: genetic mapping and linkage to the downy mildew resistance gene Pl1. Genome 44:205–212

    Article  Google Scholar 

  • Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Leach JE, Hulbert SH (2002) Diversity in nucleotide binding site-leucine rich repeat genes in cereals. Genome Res 12:1871–1884

    Article  PubMed  CAS  Google Scholar 

  • Becker DK, Dugdale B, Smith MK, Harding RM, Dale JL (2000) Genetic transformation of Cavendish banana (Musa spp. AAA group) cv ‘Grand Nain’ via microprojectile bombardment. Plant Cell Rep 19:229–234

    Article  CAS  Google Scholar 

  • Belkhadir Y, Subramaniam R, Dangl JL (2004) Plant disease resistance protein signalling: NBS-LRR proteins and their partners. Curr Opin Plant Biol 7:391–399

    Article  PubMed  CAS  Google Scholar 

  • Calenge F, Van der Linden CG, Van de Weg E, Schouten HJ, Van Arkel G, Denance C, Durel CE (2005) Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet 110:660–668

    Article  PubMed  CAS  Google Scholar 

  • Dangl L, Jones J (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Dong W, Nowara D, Schweizer P (2006) Protein polyubiquitination plays a role in basal host resistance of barley. Plant cell 18:3321–3331

    Article  PubMed  CAS  Google Scholar 

  • Douchkov D, Nowara D, Zierold U, Schweizer P (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Mol Plant Microbe Interact 18:755–761

    Article  PubMed  CAS  Google Scholar 

  • Graham M, Mareck L, Lohnes D, Cregan P, Shoemaker R (2000) Expression and genome organization of resistance gene analogues in soybean. Genome 43:86–93

    Article  PubMed  CAS  Google Scholar 

  • Grant M, Godard L, Straube E, Ashfield T, Leward J, Sattler A, Innes R, Dangl J (1995) Structure of the Arabidopsis RPM1 enabling dual specificity disease resistance. Science 269:843–846

    Article  PubMed  CAS  Google Scholar 

  • He RF, Wang Y, Shi Z, Ren X, Zhu L, Weng Q, He GC (2003) Construction of a genomic library of wild rice and Agrobacterium-mediated transformation of large insert DNA linked to BPH resistance locus. Gene 321:113–121

    Article  PubMed  CAS  Google Scholar 

  • Hermann SR, Harding RM, Dale JL (2001) The banana actin 1 promoter drives near-constitutive transgene expression in vegetative tissues of banana (Musa ssp). Plant Cell Rep 20:525–530

    Article  CAS  Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen E, Schouten HJ (2007) Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants. Trends Biotech 25:219–222

    Article  CAS  Google Scholar 

  • Joobeur T, King JJ, Nolin SJ, Thomas CE, Dean RA (2004) The Fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. Plant J 39:283–297

    Article  PubMed  CAS  Google Scholar 

  • Kanazin V, Mareck L, Shoemaker R (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93:11746–11750

    Article  PubMed  CAS  Google Scholar 

  • Khanna H, Becker D, Kleidon J, Dale J (2004) Centrifugation assisted Agrobacterium-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger AAB). Mol Breed 14:239–252

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429

    Article  PubMed  CAS  Google Scholar 

  • Leister D, Kurth J, Laurie D, Yano M, Sasaki T, Devos K, Graner A, Schulze-Lefert P (1998) Rapid organization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA 95:370–375

    Article  PubMed  CAS  Google Scholar 

  • López C, Acosta I, Jara C, Pedraza F, Gaitan-Solis E, Gallego G, Beebe S, Tohme J (2003) Identifying resistance gene analogs associated with resistance to different pathogens in common bean. Phytopathology 93:88–95

    Article  PubMed  Google Scholar 

  • Lupas A (1996) Prediction and analysis of coiled-coil structures. Methods Enzymol 266:513–525

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Zamora MG, Castagnaro AP, Díaz-Ricci JC (2004) Isolation and diversity analysis of resistance gene analogues (RGAs) from cultivated and wild strawberries. Mol Genet Genomics 272:480–487

    Article  PubMed  CAS  Google Scholar 

  • Mes J, Van Doorn A, Wijbrandi J, Simons G, Cornelissen B, Haring M (2000) Expression of the Fusarium resistance gene I-2 colocalizes with the site of fungal containment. Plant J 23:183–193

    Article  PubMed  CAS  Google Scholar 

  • Meyers B, Dickerman A, Michelmore R, Sivaramakrishnan S, Sobral B, Young N (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    Article  PubMed  CAS  Google Scholar 

  • Meyers B, Morgante M, Michelmore RW (2002) TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J 32:77–92

    Article  PubMed  CAS  Google Scholar 

  • Meyers B, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    PubMed  CAS  Google Scholar 

  • Milligan S, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson V (1998) The root knot resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding site, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    Article  PubMed  CAS  Google Scholar 

  • Monosi B, Wisser RJ, Pennill L, Hulbert SH (2004) Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet 109:1434–1447

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Vázquez E, Kaemmer D, Zhang HB, Muth J, Rodríguez-Mendiola M, Arias-Castro C, James A (2005) Construction and characterization of a plant transformation-competent BIBAC library of the black Sigatoka resistant banana Musa acuminata cv. Tuu Gia (AA). Theor Appl Genet 110:706–713

    Article  PubMed  CAS  Google Scholar 

  • Pan Q, Wendel J, Fluhr R (2000) Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 50:203–213

    PubMed  CAS  Google Scholar 

  • Parker J, Coleman M, Szabo V, Frost V, Schmidt R, Van der Biezen E, Moores T, Dean C, Daniels M, Jones J (1997) The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll interleukin-1 receptors with N and L6. Plant Cell 9:879–894

    Article  PubMed  CAS  Google Scholar 

  • Pei X, Li S, Jiang Y, Wang Z, Jia S (2007) Isolation, characterisation and phylogenetic analysis of the resistance gene analogues (RGAs) in banana (Musa spp.). Plant Sci 172:1166–1174

    Article  CAS  Google Scholar 

  • Peraza-Echeverria S, James-Kay A, Canto-Canché B, Castillo-Castro E (2007) Structural and phylogenetic analysis of Pto-type disease resistance gene candidates in banana. Mol Genet Genomics 278:443–453

    Article  PubMed  CAS  Google Scholar 

  • Ploetz RC (2005) Panama disease, an old nemesis rears its ugly head: part 1, the beginnings of the banana export trades. Plant Health Prog doi:10.1094/PHP-2005-1221-01-RV

  • Ploetz R, Pegg K (2000) Fungal disease of the root, corm and pseudosteam. In: Jones DR (ed) Diseases of Banana abaca and enset. CABI, UK, pp 143–171

    Google Scholar 

  • Ramalingam J, Vera-Cruz CM, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoidan M, George ML, Cohen MB, Hulbert SH, Leach JE, Leung H (2003) Candidate defense genes from rice, barley and maize and their associations with qualitative and quantitative resistance in rice. Mol Plant Microbe Interact 16:14–24

    Article  PubMed  CAS  Google Scholar 

  • Richter TE, Ronald PC (2000) The evolution of disease resistance genes. Plant Mol Biol 42:195–204

    Article  PubMed  CAS  Google Scholar 

  • Rivkin M, Vallejos C, McClean P (1999) Disease-resistance related sequences in common bean. Genome 42:41–47

    Article  PubMed  CAS  Google Scholar 

  • Roux NS, Toloza A, Dolezel J, Panis B (2004) Usefulness of embryogenic cell suspensions cultures for the induction and selection of mutants in Musa spp. In: Jain SM, Swennen R (eds) Banana improvement: cellular, molecular biology and induced mutations. Science Publishers Inc., USA, pp 33–43

    Google Scholar 

  • Safar J, Noa-Carranza JC, Vrana J, Bartos J, Alkhimova O, Sabau X, Simkova H, Lheureux F, Caruana ML, Dolezel J, Piffanelli P (2004) Creation of a BAC resource to study the structure and evolution of the banana (Musa balbisiana) genome. Genome 47:1182–1191

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Salmeron J, Oldroyd E, Rommens C, Scofield S, Kim H, Lavelle D, Dahlbeck D, Staskawicz B (1996) Tomato Prf is a member of a leucine-rich repeat class of plant disease resistance gene and lies embedded within the Pto kinase gene cluster. Cell 86:123–133

    Article  PubMed  CAS  Google Scholar 

  • Schuler MA, Zielinski RE (1989) RNA isolation from light- and dark-grown seedlings. In: Schuler MA (ed) Methods in plant molecular biology. Academic Press, San Diego, pp 89–96

  • Seah S, Spielmeyer W, Jahier J, Sivasithamparam K, Lagudah S (2000) Resistance gene analogs within and introgressed chromosomal segment derived from Triticum ventricosum that confers resistance to nematode and rust pathogens in wheat. Mol Plant Microbe Interact 13:334–341

    Article  PubMed  CAS  Google Scholar 

  • Shen K, Meyers B, Islam-Faridi M, Chin D, Stelly D, Michelmore R (1998) Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microbe Interact 11:815–823

    Article  PubMed  CAS  Google Scholar 

  • Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088

    Article  PubMed  CAS  Google Scholar 

  • Simons G, Groenendijk J, Wijbrandi J, Reijans M, Groenen J, Diergaarde P, Van der Lee T, Bleeker M, Onstenk J, Both M, Haring M, Mes J, Cornelisse B, Zabeau M, Vos P (1998) Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10:1055–1068

    Article  PubMed  CAS  Google Scholar 

  • Smith MK, Hamill SD (1999) Banana tissue culture for clean, sustainable production. In: Final report (FR96013). Horticultural Research & Development Corporation, Gordon

  • Smith MK, Hamill SD, Langdon PW, Pegg KG (1998) Selection of new banana varieties for the cool subtropics in Australia. Acta Hortic 490:49–56

    Google Scholar 

  • Tameling W, Elzinga S, Darmin P, Vossen J, Takken F, Haring M, Cornelissen B (2002) The tomato R gene products I2 and Mi-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14:2929–2939

    Article  PubMed  CAS  Google Scholar 

  • Taylor K (2005) Characterization of potential fungal disease resistance genes in banana. PhD thesis, Queensland University of Technology, Brisbane, pp 68–96

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Van Der Biezen E, Jones JDG (1998) Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 23:454–456

    Article  PubMed  Google Scholar 

  • Vilarinhos AD, Piffanelli P, Lagoda P, Thibivilliers S, Sabau X, Carreel F, D’Hont A (2003) Construction and characterization of a bacterial artificial chromosome library of banana (Musa acuminata Colla). Theor Appl Genet 106:1102–1106

    PubMed  CAS  Google Scholar 

  • Waterhouse PM, Helliwell CA (2003) Exploring plant genomes by RNA-induced gene silencing. Nat Rev 4:29–38

    Article  CAS  Google Scholar 

  • Yu Y, Buss G, Maroof M (1996) Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci USA 93:11751–11756

    Article  PubMed  CAS  Google Scholar 

  • Zhou T, Wang T, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics 271:402–415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mr Luke Devitt and Dr Ben Dugdale for their technical assistance, Dr Kay Taylor for providing data of NBS sequences from M. acuminata ssp. burmannicoides and Ms Jennifer Kleidon for maintaining plants. We thank Dr Ivan Buddenhagen for the provision of Musa acuminata ssp. malaccensis seed. The work was funded by the Australian Research Council. Santy Peraza-Echeverria was supported by a PhD scholarship (No. 126280) from CONACyT Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Collet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peraza-Echeverria, S., Dale, J.L., Harding, R.M. et al. Characterization of disease resistance gene candidates of the nucleotide binding site (NBS) type from banana and correlation of a transcriptional polymorphism with resistance to Fusarium oxysporum f.sp. cubense race 4. Mol Breeding 22, 565–579 (2008). https://doi.org/10.1007/s11032-008-9199-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-008-9199-x

Keywords

Navigation