Skip to main content

Advertisement

Log in

Antinociceptive and anti-inflammatory activities of the aqueous extract of Kaempferia galanga leaves in animal models

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

This study was performed to determine the antinociceptive and anti-inflammatory activities of aqueous extract of Kaempferia galanga leaves using various animal models. The extract, in the doses of 30, 100, and 300 mg/kg, was prepared by soaking (1:10; w/v) the air-dried powdered leaves (40 g) in distilled water (dH2O) for 72 h and administered subcutaneously in mice/rats 30 min prior to the tests. The extract exhibited significant (P < 0.05) antinociceptive activity when assessed using the abdominal constriction, hot-plate and formalin tests, with activity observed in all tests occurring in a dose-dependent manner. Furthermore, the antinociceptive activity of K. galanga extract was significantly (P < 0.05) reversed when prechallenged with 10 mg/kg naloxone. The extract also produced a significantly (P < 0.05) dose-dependent anti-inflammatory activity when assessed using the carrageenan-induced paw-edema test. In conclusion, this study demonstrated that K. galanga leaves possessed antinociceptive and anti-inflammatory activities and thus supports the Malay’s traditional uses of the plant for treatments of mouth ulcer, headache, sore throat, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad F, Khan RA, Rasheed S (1992) Study of analgesic and anti-inflammatory activity from plant extracts of Lactuca scariola and Artemisia absinthium. J Islam Acad Sci 5(2):111–114

    Google Scholar 

  2. Chithra M (2005) Protocol for rapid formation, to overcome delayed rhizome formation in field established in vitro derived plantlets of K. galanga Linn. Sci Hortic 104:113–120

    Article  CAS  Google Scholar 

  3. Othman R, Ibrahim H, Mohd MA, Mustafa MR, Awang K (2006) Bioassay guided isolation of a vasorelaxant active compound from Kaempferia galanga L. Phytomed 13(1–2):61–66

    Article  CAS  Google Scholar 

  4. Zakaria M, Mustafa AM (1994) Traditional Malays medicinal plants. Fajar Bakti, Kuala Lumpur, pp 129

  5. Hirschhorn HH (1983) Botanical remedies of the former Dutch East Indies (Indonesia). J Ethnopharmacol 72:123–156

    Article  Google Scholar 

  6. Kanjanapothi D, Panthong A, Lertprasertsuke N, Taesotikul T, Rujjanawate C, Kaewpinit D, Sudthayakorn R, Choochote W, Chaithong U, Jitpakdi A, Pitasawat B, (2004) Toxicity of crude rhizome extract of Kaempferia galanga L. (Proh Hom). J Ethnopharmacol 90(2):359–365

    Article  PubMed  CAS  Google Scholar 

  7. Jaganath IB, Teik Ng L (2002) Herbs: the green pharmacy of Malaysia. Vinpress Sdn. Bhd. In collaboration with the Malaysian Agricultural Research and Development Institute (MARDI), pp 51–52

  8. Burkill IH (1966) A dictionary of the economic products of the Malay Peninsula (Vol. 2). Published on behalf of the Government of Malaysia and Singapore by the Ministry of Agriculture and Co-operatives. Kuala Lumpur, Malaysia, pp 1296–1297

    Google Scholar 

  9. George M, Pandalai KM (1949) Investigations on plant antibiotics (Part IV): further search for antibiotic substances in Indian medicinal plants. Indian J Med Res 37:169–181

    CAS  Google Scholar 

  10. Chu DM, Miles H, Toney D, Ngyuen C, Marciano-Cabral F (1998) Amebicidal activity of plant extracts from Southeast Asia on Acanthamoeba spp. Parasitol Res 84:746–752

    Article  PubMed  CAS  Google Scholar 

  11. Pitasawat B, Choochote W, Kanjanapothi D (1998) Screening for larvicidal activity of ten carminative plants. Southeast Asian J Trop Med Public Health 29:660–662

    PubMed  CAS  Google Scholar 

  12. Vimala S, Norhanom AW, Yadav M (1999) Anti-tumour promoter activity in Malaysian ginger rhizobia used in traditional medicine. Br J Cancer 80:110–116

    Article  PubMed  CAS  Google Scholar 

  13. Kiuchi F, Nakamura N, Tsuda Y (1987) 3-caren-5-one from Kaempferia galanga. Phytochem 26(12):335–351

    Article  Google Scholar 

  14. Zakaria ZA, Safarul M, Valsala R, Sulaiman MR, Fatimah CA, Mat Jais AM (2005) Influence of temperature on the opioid-mediated antinociceptive activity of Corchorus olitorius L. in mice. Naunyn Schmiedebergs Arch Pharmacol 372:55–62

    Article  PubMed  CAS  Google Scholar 

  15. Sulaiman MR, Somchit MN, Israf DA, Ahmad Z, Moin S (2004) Antinociceptive effect of Melastoma malabathricum ethanolic extract in mice. Fitoterapia 75:667–672

    Article  PubMed  CAS  Google Scholar 

  16. Zimmermann M (1983) Ethical guidelines for investigation of experimental pain in conscious animals. Pain 16:109–110

    Article  PubMed  CAS  Google Scholar 

  17. Dambisya YM, Lee TL (1995) Effects of L-NAME, L-NMMA and L-arginine on the antinociceptive effects of morphine in mice. Methods Find Exp Clin Pharmacol 17:577–582

    PubMed  CAS  Google Scholar 

  18. Hunskaar S, Hole K (1987) The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30:103–104

    Article  PubMed  CAS  Google Scholar 

  19. Chakraborty A, Devi RKB, Rita S, Sharatchandra K, Singh TI (2004) Preliminary studies on anti-inflammatory and analgesic activities of Spilanthes acmella in experimental animal models. Indian J Pharmacol 36:148–150

    Google Scholar 

  20. Ikhiri K, Boureima D, Dan-Kouloudo D (1992) Chemical screening of medicinal plants used in the traditional pharmacopoeia of Niger. Int J Pharmacol 30:251–262

    Article  CAS  Google Scholar 

  21. Berkenkopf JW, Weichman BM (1988) Production of prostacyclin in mice following intraperitoneal injection of acetic acid, phenylbenzoquinone and zymosan: its role in the writhing response. Prostaglandins 36:693–709

    Article  PubMed  CAS  Google Scholar 

  22. Ballou LR, Botting RM, Goorha S, Zhang J, Vane JR (2000) Nociception in cyclooxygenase isozyme-deficient mice. Proc Nat Acad Sci USA 97:10272–10276

    Article  PubMed  CAS  Google Scholar 

  23. Pini LA, Vitale G, Ottani A, Sandrini M (1996) Naloxone-reversible antinociception by paracetamol in the rat. J Pharmacol Exp Ther 280:934–940

    Google Scholar 

  24. Gamache DA, Povlishock JT, Ellis EF (1986) Carrageenan-induced brain inflammation. Characterization of the model. J Neurosurg 65:675–685

    Google Scholar 

  25. Brooks PM, Day RO (1991) Nonsteroidal anti-inflammatory drugs: differences and similarities. N Engl J Med 324:1716

    Article  PubMed  CAS  Google Scholar 

  26. Hunskaar S, Fasmer OB, Hole K (1986) Formalin test in mice: a useful technique for evaluating mild analgesics. J Neurosci Methods 14:69–76

    Article  Google Scholar 

  27. Banerjee S, Sur TK, Mandal S, Das PC, Sikdar S (2000) Assessment of the anti-inflammatory effect of Swertia chirata in acute and chronic experimental models in male albino rats. Indian J Pharmacol 32:21

    Google Scholar 

  28. Greenwald RA (1991) Animal model for evaluation of arthritic drugs. Methods Find Exp Clin Pharmacol 3:75–83

    Google Scholar 

  29. Vineger R, Schreiber W, Hugo R (1969) Biphasic development of carrageenan edema in rats. J Pharmacol Exp Ther 166:96–103

    Google Scholar 

  30. Mazzon E, Serraino I, Li JH, Dugo L, Caputi AP, Zhang J, Cuzzocrea S (2001) GPI 6150, a poly (ADP-ribose) polymerase inhibitor, exhibits an anti-inflammatory effect in rat models of inflammation. Eur J Pharmacol 415:85–94

    Article  PubMed  CAS  Google Scholar 

  31. Ogonowski AA, May SW, Moore AB, Barret LT, O’Bryant CL, Pollock SH (1997) Antiinflammatory and analgesic activity of an inhibitor of neuropeptide amidation. J Pharmacol Exp Ther 280:846–853

    PubMed  CAS  Google Scholar 

  32. Mantle D, Eddeb F, Pickering AT (2000) Comparison of relative antioxidant activities of British medicinal plant species in vitro. J Ethnopharmacol 72:497–510

    Article  Google Scholar 

  33. Kim HP, Son KH, Chang HW, Kang SS (2004) Anti-inflammatory plant flavonoids and cellular action mechanisms. J Pharmacol Sci 96(3):229–245

    Article  PubMed  CAS  Google Scholar 

  34. Ramesh M, Rao YN, Rao AV, Prabhakar MC, Rao CS, Muralidhar N, Reddy BM (1998) Antinociceptive and anti-inflammatory activity of a flavonoid isolated from Caralluma attenuata. J Ethnopharmacol 62:63–66

    Article  PubMed  CAS  Google Scholar 

  35. Beirith A, Santos ARS, Calixto JB, Hess SC, Messana I, Ferrari F, Yunes RA (1999) Study of the antinociceptive action of the ethanolic extract and the triterpene 24-hydroxytormentic acid isolated from the stem bark of Ocotea suaveolens. Planta Med 65:50–55

    Article  PubMed  CAS  Google Scholar 

  36. Ghosh D, Thejomoorthy P, Veluchamy P (1983) Anti-inflammatory and analgesic activities of oleanolic acid 3-/3-glucoside (RDG-1) from Randia dumetorum (Rubiaceae). Ind J Pharmacol 15(4):331–342

    Google Scholar 

  37. Karumi Y, Onyeyili P, Ogugbuaja VO (2003) Anti-inflammatory and antinociceptive (analgesic) properties of Momordical balsamina Linn. (Balsam apple) leaves in rats. Pak J Biol Sci 6(17):1515–1518

    Google Scholar 

  38. Starec M, Waitzov’a D, Elis J (1988) Evaluation of the analgesic effect of RG-tannin using the “hot plate” and “tail flick” method in mice. Cesk Farm 37:319–321

    PubMed  CAS  Google Scholar 

  39. Suh HW, Song DK, Son KH, Wie MB, Lee KH, Jung KY, Do JC, Kim YH (1996) Antinociceptive mechanisms of dipsacus saponin C administered intracerebroventricularly in the mouse. Gen Pharmacol 27(7):1167–1172

    PubMed  CAS  Google Scholar 

  40. Meotti FC, Luiz AP, Pizzolatti MG, Kassuya CAL, Calixto JB, Santos ARS (2005) Analysis of the antinociceptive effect of the flavonoid myricitrin. Evidence for a role of the l-arginine-nitric oxide and protein kinase C pathways. J Pharmacol Exp Ther 316(2):789–796

    Article  PubMed  CAS  Google Scholar 

  41. Attaway DH, Zaborsky OR (1993) Marine biotechnology: pharmaceutical and bioactive natural products,vol 1. Plenum, New York, pp 1–23

    Google Scholar 

  42. Olszanecki R, Gêbska A, Kozlovski VI, Gryglewski RJ (2002) Flavonoids and nitric oxide synthase. J Physiol Pharmacol 53(4):571–584

    PubMed  CAS  Google Scholar 

  43. Oblak M, Randic M, Solmajer T (2000) Quantitative structure-activity relationship of flavonoid analogues. 3. Inhibition of p56lck protein tyrosine kinase. J Chem Inf Comput Sci 40:994–1001

    Article  PubMed  CAS  Google Scholar 

  44. Otuki MF, Ferreira J, Lima FV, Meyre-Silva C, Malheiros Â, Muller LA, Cani GS, Santos ARS, Yunes RA, Calixto JB (2005) Antinociceptive properties of mixture of α-amyrin and β-amyrin triterpenes: evidence for participation of protein kinase C and protein kinase A pathways. J Pharmacol Exp Ther 313:310–318

    Article  PubMed  CAS  Google Scholar 

  45. Ferreira SH, Duarte IDG, Lorenzetti BB (1991) The molecular mechanism of action of peripheral morphine analgesia: stimulation of the cGMP system via nitric oxide release. Eur J Pharmacol 201:121–122

    Article  PubMed  CAS  Google Scholar 

  46. Machelska H, Labuz D, Przewlocki R, Przewlocka B (1997) Inhibition of nitric oxide synthase enhances antinociception mediated by mu, delta and kappa opioid receptors in acute and prolonged pain in the rat spinal cord. J Pharmacol Exp Ther 282:977–984

    PubMed  CAS  Google Scholar 

  47. Chen CK, Pace-Asciak CR (1996) Vasorelaxing activity of resveratrol and quercetin in isolated rat aorta. Gen Pharmacol 27:363–366

    PubMed  CAS  Google Scholar 

  48. Middleton Jr E, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    PubMed  CAS  Google Scholar 

  49. Robak J, Shridi F, Wolbis M, Krolikowska M (1998) Screening of the influence of flavonoids on lipoxygenase and cyclooxygenase activity, as well as on nonenzymic lipid oxidation. Pol J Pharmacol Pharm 40:451–458

    Google Scholar 

  50. Nam NH (2006) Naturally occurring NF-kappaB inhibitors. Mini Rev Med Chem 6(8):945–951

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the research grant of the Faculty of Medicine and Health Sciences, UPM, Serdang, Selangor, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Sulaiman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sulaiman, M.R., Zakaria, Z.A., Daud, I.A. et al. Antinociceptive and anti-inflammatory activities of the aqueous extract of Kaempferia galanga leaves in animal models. J Nat Med 62, 221–227 (2008). https://doi.org/10.1007/s11418-007-0210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-007-0210-3

Keywords

Navigation