Applied Biochemistry and Biotechnology

, Volume 175, Issue 4, pp 2035–2049 | Cite as

Insight into Microwave-Assisted Lipase Catalyzed Synthesis of Geranyl Cinnamate: Optimization and Kinetic Modeling

  • Somnath D. Shinde
  • Ganapati D. YadavEmail author


Cinnamate esters have gained importance due to their unique antioxidant, flavor, and fragrance properties. Synergism of microwave irradiation and enzyme catalysis was investigated in transesterification of ethyl cinnamate and geraniol. Effects of different operating parameters such as biocatalyst, solvent, and temperature were first studied. An increase in initial rates up to 4.2-fold was observed under microwave irradiation vis-a-vis conventional heating. Further, the Taguchi L16 (4*4) orthogonal array design with four level-four variables and 16 run was employed for the optimization of parameters including enzyme loading, temperature, speed of agitation, and substrate mole ratio. Optimal conditions obtained via the Taguchi approach were as follows: enzyme loading, 60 mg; temperature, 65 °C; speed of agitation, 300 rpm; and substrate mole ratio, 1:2. The analysis of initial rate data established the validity of the ternary complex ordered bi–bi mechanism with inhibition by geraniol. The experimental data fitted very well with the model predictions.


Geranyl cinnamate Heterogeneous biocatalysis Transesterification Microwave irradiation Optimization Kinetic parameters 



GDY received support from R.T. Mody Distinguished Professor Endowment and J. C. Bose National Fellowship of Department of Science and Technology, Government of India. SDS received SRF from UGC under its Meritorious Fellowship BSR program (CAS in Chemical Engineering Department). The authors thank Novo Nordisk, Denmark for the gifts of enzyme.

Supplementary material

12010_2014_1367_MOESM1_ESM.docx (27 kb)
ESM 1 (DOCX 26 kb)


  1. 1.
    Yadav, G. D., & Shinde, S. D. (2012). International Review of Chemical Engineering, 4, 589–596.Google Scholar
  2. 2.
    Yadav, G. D., & Lathi, P. S. (2004). Journal of Molecular Catalysis B: Enzymatic, 27, 113–119.CrossRefGoogle Scholar
  3. 3.
    Jakovetić, S. M., Jugović, B. Z., Gvozdenović, M. M., Bezbradica, D. I., Antov, M. G., Mijin, D. Z., & Knežević-Jugović, Z. D. (2013). Applied Biochemistry and Biotechnology, 170, 1560–1573.CrossRefGoogle Scholar
  4. 4.
    Yadav, G. D., & Shinde, S. D. (2012). International Journal of Chemical Reactor Engineering, 10, A70.CrossRefGoogle Scholar
  5. 5.
    Chiaradia, V., Paroul, N., Cansian, R. L., Júnior, C. V., Detofol, M. R., Lerin, L. A., Oliveira, J. V., & de Oliveira, D. (2012). Applied Biochemistry and Biotechnology, 168, 742–751.CrossRefGoogle Scholar
  6. 6.
    Paroul, N., Grzegozeski, L. P., Chiaradia, V., Treichel, H., Cansian, R. L., Vladimir Oliveira, J., & de Oliveira, D. (2012). Applied Biochemistry and Biotechnology, 166, 13–21.CrossRefGoogle Scholar
  7. 7.
    Yadav, G. D., & Devi, K. M. (2002). Biochemical Engineering Journal, 10, 93–101.CrossRefGoogle Scholar
  8. 8.
    Zhang, W.-W., Wang, N., Feng, X.-W., Zhang, Y., & Yu, X.-Q. (2014). Applied Biochemistry and Biotechnology, 173, 535–543.CrossRefGoogle Scholar
  9. 9.
    Pan, X., Chen, B., Wang, J., Zhang, X., Zhul, B., & Tan, T. (2012). Applied Biochemistry and Biotechnology, 168, 68–77.CrossRefGoogle Scholar
  10. 10.
    Voll, F. A. P., Zanette, A. F., Cabral, V. F., Dariva, C., De Souza, R. O. M. A., Filho, L. C., & Corazza, M. L. (2012). Applied Biochemistry and Biotechnology, 168, 1121–1142.CrossRefGoogle Scholar
  11. 11.
    Romero, M. D., Gomez, J. M., Diaz-Suelto, B., Garcia-Sanz, A., & Baster, N. (2011). Applied Biochemistry and Biotechnology, 165, 1129–1140.CrossRefGoogle Scholar
  12. 12.
    Mohamed, I. O. (2013). Applied Biochemistry and Biotechnology, 171, 655–666.CrossRefGoogle Scholar
  13. 13.
    Torres, C. F., Torrelo, G., Vazquez, L., Señorans, F. J., & Reglero, G. (2008). Journal of Bioscience and Bioengineering, 106, 559–562.CrossRefGoogle Scholar
  14. 14.
    Shinde, S. D., & Lele, S. S. (2010). International Journal of Advanced Biotechnology and Research, 1, 104–114.Google Scholar
  15. 15.
    Liu, S., Zhang, C., Hong, P., & Ji, H. (2007). Food Chemistry, 103, 1009–1015.CrossRefGoogle Scholar
  16. 16.
    de Araújo, M. E. M. B., Campos, P. R. B., Noso, T. M., Alberici, R. M., da Silva Cunha, I. B., Simas, R. C., Eberlin, M. N., & Carvalho, P. O. (2011). Food Chemistry, 127, 28–33.CrossRefGoogle Scholar
  17. 17.
    Rao, R. S., Kumar, C. G., Prakasham, R. S., & Hobbs, P. J. (2008). Biotechnology Journal, 3, 510–523.CrossRefGoogle Scholar
  18. 18.
    Saudagar, P. S., & Singhal, R. S. (2007). Applied Biochemistry and Biotechnology, 136, 345–359.CrossRefGoogle Scholar
  19. 19.
    Adnani, A., Basri, M., Malek, E. A., Salleh, A. B., Abdul Rahman, M. B., Chaibakhsh, N., & Abdul Rahman, R. N. Z. R. (2010). Industrial Crops and Products, 31, 350–356.CrossRefGoogle Scholar
  20. 20.
    Preeti, V. E., Sandhya, S. V., Kuttiraja, M., Sindhu, R., Vani, S., Kumar, S. R., Pandey, A., & Binod, P. (2012). Applied Biochemistry and Biotechnology, 167, 1489–1500.CrossRefGoogle Scholar
  21. 21.
    Rao, R. S., Prakasham, R., Prasad, K. K., Rajesham, S., Sarma, P., & Rao, L. V. (2004). Process Biochemistry, 39, 951–956.CrossRefGoogle Scholar
  22. 22.
    Pandit, N. T., & Pandit, A. B. (2014). Applied Biochemistry and Biotechnology, 172, 3606–3620.CrossRefGoogle Scholar
  23. 23.
    Houng, J. Y., Hsu, H.-F., Liu, Y.-H., & Wu, J.-Y. (2003). Journal of Biotechnology, 100, 239–250.CrossRefGoogle Scholar
  24. 24.
    de Oliveira, D., do Nascimento Filho, I., di Luccio, M., Faccio, C., Rosa, C. D., Bender, J. P., Lipke, N., Amroginski, C., Dariva, C., & de Oliveira, J. V. (2005). Applied Biochemistry and Biotechnology, 121, 231–241.CrossRefGoogle Scholar
  25. 25.
    Sun, J., Yu, B., Curran, P., & Liu, S.-Q. (2012). Food Chemistry, 135, 2714–2720.CrossRefGoogle Scholar
  26. 26.
    Kamil, R. N. M., Yusup, S., & Rashid, U. (2011). Fuel, 90, 2343–2345.CrossRefGoogle Scholar
  27. 27.
    Wang, A., Liu, M., Wang, H., Zhou, C., Du, Z., Zhu, S., Shen, S., & Ouyang, P. (2008). Journal of Bioscience and Bioengineering, 106, 286–291.CrossRefGoogle Scholar
  28. 28.
    Wang, A., Zhou, C., Du, Z., Liu, M., Zhu, S., Shen, S., & Ouyang, P. (2009). Journal of Bioscience and Bioengineering, 107, 219–224.CrossRefGoogle Scholar
  29. 29.
    Yadav, G. D., & Borkar, I. V. (2006). AIChE Journal, 52, 1235–1247.CrossRefGoogle Scholar
  30. 30.
    Kappe, O. C., Pieber, B., & Dallinger, D. (2013). Angewandte Chemie International Edition, 52, 1088–1094.CrossRefGoogle Scholar
  31. 31.
    Loupy, A. (2002). Microwaves in organic synthesis. Weinheim: Wiley-VCH.CrossRefGoogle Scholar
  32. 32.
    Hayes, B. L. (2002). Microwave synthesis: chemistry at the speed of light, Matthews. NC: CEM publishing.Google Scholar
  33. 33.
    Yadav, G. D., & Dhoot, S. B. (2009). Journal of Molecular Catalysis B: Enzymatic, 57, 34–39.CrossRefGoogle Scholar
  34. 34.
    Yadav, G. D., & Pawar, S. V. (2012). Bioresource Technology, 109, 1–6.CrossRefGoogle Scholar
  35. 35.
    Wan, H.-D., Sun, S.-Y., Hu, X.-Y., & Xia, Y.-M. (2012). Applied Biochemistry and Biotechnology, 166, 1454–1462.CrossRefGoogle Scholar
  36. 36.
    Zhou, J., Wu, D., & Guo, D. (2010). Journal of Chemical Technology and Biotechnology, 85, 1402–1406.CrossRefGoogle Scholar
  37. 37.
    Yu, D., Tian, L., Ma, D., Wu, H., Wang, Z., Wang, L., & Fang, X. (2010). Green Chemistry, 12, 844–850.CrossRefGoogle Scholar
  38. 38.
    Yadav, G. D., & Borkar, I. V. (2008). Industrial and Engineering Chemistry Research, 47, 3358–3363.CrossRefGoogle Scholar
  39. 39.
    Wehtje, E., & Adlercreutz, P. (1997). Biotechnology Letters, 19, 537–540.CrossRefGoogle Scholar
  40. 40.
    da Silva, C. J., Queiroz, N., da Graca, N. M., & Soldi, V. (2005). Process Biochemistry, 40, 401–409.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Chemical EngineeringInstitute of Chemical TechnologyMumbaiIndia

Personalised recommendations