Skip to main content
Log in

Synthesis of Aliphatic Esters of Cinnamic Acid as Potential Lipophilic Antioxidants Catalyzed by Lipase B from Candida antarctica

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Immobilized lipase from Candida antarctica (Novozyme 435) was tested for the synthesis of various phenolic acid esters (ethyl and n-butyl cinnamate, ethyl p-coumarate and n-butyl p-methoxycinnamate). The second-order kinetic model was used to mathematically describe the reaction kinetics and to compare present processes quantitatively. It was found that the model agreed well with the experimental data. Further, the effect of alcohol type on the esterification of cinnamic acid was investigated. The immobilized lipase showed more ability to catalyze the synthesis of butyl cinnamate. Therefore, the process was optimized for the synthesis of butyl cinnamate as a function of solvent polarity (logP) and amount of biocatalyst. The highest ester yield of 60.7 % was obtained for the highest enzyme concentration tested (3 % w/w), but the productivity was for 34 % lower than the corresponding value obtained for the enzyme concentration of 1 % (w/w). The synthesized esters were purified, identified, and screened for antioxidant activities. Both DPPH assay and cyclic voltammetry measurement have shown that cinnamic acid esters have better antioxidant properties than cinnamic acid itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pratt, D. E., & Hudson, B. J. F. (1990). In B. J. F. Hudson (Ed.), Food antioxidants (pp. 171–192). London: Elsevier Science.

    Chapter  Google Scholar 

  2. Larson, R. A. (1988). Phytochemistry, 27, 969–978.

    Article  CAS  Google Scholar 

  3. Stamatis, H., Sereti, V., & Kolisis, F. N. (1999). Journal of the American Oil Chemists’ Society, 76, 1505–1510.

    Article  CAS  Google Scholar 

  4. Shaath, N. A. (1997). In N. J. Lowe, N. A. Shaath, & M. A. Pathak (Eds.), Sunscreens: development, evaluation, and regulatory aspects (2nd ed., pp. 3–33). New York: Marcel Dekker, Inc.

    Google Scholar 

  5. Compton, D. L., Laszlo, J. A., & Berhow, M. A. (2000). Journal of the American Oil Chemists’ Society, 77, 513–519.

    Article  CAS  Google Scholar 

  6. Patil, D., Dev, B., & Nag, A. (2011). Journal of Molecular Catalysis B: Enzymatic, 73, 5–8.

    Article  CAS  Google Scholar 

  7. Sabally, K., Karboune, S., Yeboah, F., & Kermasha, S. (2005). Applied Biochemistry and Biotechnology, 127, 17–27.

    Article  CAS  Google Scholar 

  8. Feddern, V., Yang, Z., Xu, X., Badiale-Furlong, E., & de Souza-Soares, L. A. (2011). Industrial and Engineering Chemistry Research, 50, 7183–7190.

    Article  CAS  Google Scholar 

  9. Singh, A., & Mukhopadhyay, M. (2012). Applied Biochemistry and Biotechnology, 166, 486–520.

    Article  CAS  Google Scholar 

  10. Kapoor, M., & Gupta, M. N. (2012). Process Biochemistry, 47, 555–569.

    Article  CAS  Google Scholar 

  11. Yadav, G. D., & Lathi, P. S. (2004). Journal of Molecular Catalysis B: Enzymatic, 27, 109–115.

    Article  Google Scholar 

  12. Li, W.-N., Chen, B.-Q., & Tan, T.-W. (2011). Applied Biochemistry and Biotechnology, 163, 102–111.

    Article  CAS  Google Scholar 

  13. Milašinović N, Knežević-Jugović Z, Jakovljević Ž, Filipović J, Kalagasidis Krušić M (2012) Chem Eng J 181–182, 614–623

  14. Bezbradica, D., Mijin, D., Šiler-Marinković, S., & Knežević, Z. (2007). Journal of Molecular Catalysis B: Enzymatic, 45, 97–101.

    Article  CAS  Google Scholar 

  15. Martins, A. B., Graebin, N. G., Lorenzoni, A. S. G., Fernandez-Lafuente, R., Ayub, M. A. Z., & Rodrigues, R. C. (2011). Process Biochemistry, 46, 2311–2316.

    Article  CAS  Google Scholar 

  16. Guyot, B., Bosquette, B., Pina, M., & Graille, J. (1997). Biotechnology Letters, 19, 529–532.

    Article  CAS  Google Scholar 

  17. Yang, Z., Guo, Z., & Xu, X. (2012). Food Chemistry, 132, 1311–1315.

    Article  CAS  Google Scholar 

  18. Lee, G.-S., Widjaja, A., & Ju, Y.-H. (2006). Biotechnology Letters, 28, 581–585.

    Article  CAS  Google Scholar 

  19. Katsoura, M. H., Polydera, A. C., Tsironis, L. D., Petraki, M. P., Rajačić, S. K., Tselepis, A. D., et al. (2009). New Biotechnology, 26, 83–91.

    Article  CAS  Google Scholar 

  20. Belsito, D., Bickers, D., Bruze, M., Calow, P., Greim, H., Hanifin, J. M., et al. (2007). Food and Chemical Toxicology, 45, S1–S23.

    Article  Google Scholar 

  21. Borneman, W. S., Hartley, R. D., Morrison, W. H., Akin, D. E., & Ljungdahl, L. G. (1990). Applied Microbiology and Biotechnology, 33, 345–351.

    Article  CAS  Google Scholar 

  22. Blois, M. S. (1958). Nature, 181, 1199–1200.

    Article  CAS  Google Scholar 

  23. Gorjanović, S. Z., Novaković, M. M., Potkonjak, N. I., & Sužnjević, D. Z. (2010). Journal of Agricultural and Food Chemistry, 58, 4626–4631.

    Article  Google Scholar 

  24. Basso, A., Braiuca, P., Cantone, S., Ebert, C., Linda, P., Spizzo, P., et al. (2007). Advanced Synthesis and Catalysis, 349, 877–886.

    Article  CAS  Google Scholar 

  25. Uppenberg, J., Hansen, M. T., Patkar, S., & Jones, T. A. (1994). Structure, 2, 293–308.

    Article  CAS  Google Scholar 

  26. Magnusson A (2005) Ph. D. Thesis, Royal Institute of Technology, Stockholm, Sweden.

  27. Buisman, G. J. H., van Helteren, C. T. W., Kramer, G. F. H., Veldsink, J. W., Derksen, J. T. P., & Cuperus, F. P. (1998). Biotechnology Letters, 20, 131–136.

    Article  CAS  Google Scholar 

  28. Laane, C., Boeren, S., Vos, K., & Veeger, C. (1987). Biotechnology and Bioengineering, 30, 81–87.

    Article  CAS  Google Scholar 

  29. Fu, B., & Vasudevan, P. T. (2010). Energy & Fuels, 24, 4646–4651.

    Article  CAS  Google Scholar 

  30. Jung, H., Kang, S., Hyun, S., & Choi, J. (2005). Archives of Pharmacal Research, 28, 534–540.

    Article  CAS  Google Scholar 

  31. Garrido, J., Gaspar, A., Garrido, E. M., Miri, R., Tavakkoli, M., Pourali, S., et al. (2011). Biochimie, 94, 961–967.

    Article  Google Scholar 

  32. Menezes, J. C. J. M. D. S., Kamat, S. P., Cavaleiro, J. A. S., Gaspar, A., Garrido, J., & Borges, F. (2011). European Journal of Medicinal Chemistry, 46, 773–777.

    Article  CAS  Google Scholar 

  33. Kikuzaki, H., Hisamoto, M., Hirose, K., Akiyama, K., & Taniguchi, H. (2002). Journal of Agricultural and Food Chemistry, 50, 2161–2168.

    Article  CAS  Google Scholar 

  34. Simić, A., Manojlović, D., Šegan, D., & Todorović, M. (2007). Molecules, 12, 2327–2340.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grant numbers E!6750 and III 46010 from the Ministry of Education, Science and Technological Development, Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zorica D. Knežević-Jugović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakovetić, S.M., Jugović, B.Z., Gvozdenović, M.M. et al. Synthesis of Aliphatic Esters of Cinnamic Acid as Potential Lipophilic Antioxidants Catalyzed by Lipase B from Candida antarctica . Appl Biochem Biotechnol 170, 1560–1573 (2013). https://doi.org/10.1007/s12010-013-0294-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0294-z

Keywords

Navigation