Skip to main content
Log in

Exploration of a Cheaper Carbon Source for Extracellular β-glucosidase Synthesis from Debaryomyces pseudopolymorphus NRRL YB-4229

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present work, interactions between common media components and fermentation conditions were explored to come up with a simple media recipe for extracellular β-glucosidase (Dβ-gl) synthesis from Debaryomyces pseudopolymorphus to substitute cellobiose, which is currently used as a sole carbon source. Taguchi L25 orthogonal array design was used to screen factors influencing Dβ-gl synthesis (carbon, organic nitrogen, inorganic nitrogen, trace elements, inoculum volume, and fermentation time). A significant influence of xylose, peptone, and potassium nitrate as carbon, organic nitrogen, and inorganic nitrogen sources, respectively, on Dβ-gl synthesis was identified by Taguchi. These factors were further optimized using central composite rotatable design (CCRD) of response surface methodology (RSM). The results showed that in the range studied, potassium nitrate had insignificant effect while xylose, peptone, and xylose-peptone interaction had a significant effect on Dβ-gl synthesis. Peptone/xylose ratio of 1.33 was found to be an important parameter for inducing Dβ-gl synthesis. The regression coefficient (R 2) of 0.915 and P value of <0.0003 for the model indicated that it was highly significant. The maximum activity obtained after RSM (32.2 U/ml) was comparable with that obtained (68.8 U/ml) when cellobiose (20 g/l) was used as a sole carbon source. Considering the cost difference between xylose and cellobiose, a 16-fold cost reduction could be obtained for equivalent Dβ-gl yield. Fed-batch fermentations were carried out wherein peptone/xylose ratio of 1.33 was maintained and continuous Dβ-gl synthesis was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bhatia, Y., Mishra, S., & Bisaria, V. S. (2002). Microbial β-glucosidases: cloning, properties and applications. CRC Critical Reviews in Biotechnology, 24, 375–407.

    Article  Google Scholar 

  2. Bhat, M. K., & Bhat, S. (1997). Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 15, 583–620.

    Article  CAS  Google Scholar 

  3. Romero, M. D., Aguado, J., Rodriguez, L., & Calles, J. A. (1999). Hydrolysis of cellobiose using β-from penicilliurnjkniculosum. Kinetic analysis. Acta Biotechnologica, 19, 3–16.

    Article  CAS  Google Scholar 

  4. Liu, L. Z., Weber, A. S., Cotta, M. A., & Li, S.-Z. (2012). A new β-producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation. Bioresource Technology, 104, 410–416.

    Article  CAS  Google Scholar 

  5. Arevalo-Villena, M., UbedaIranzo, J. F., Gundllapalli, S. B., Cordero Otero, R. R., & Briones-Perez, A. I. (2006). Characterization of an exocellular β-from Debaromyces pseudopolymorphus. Enzyme and Microbial Technology, 39, 229–234.

    Article  CAS  Google Scholar 

  6. Gueguen, Y., Chemardin, P., Pien, S., Arnaud, A., & Galzy, P. (1997). Enhancement of aromatic quality of muscat wine by the use of immobilized β-glucosidase. Journal of Biotechnology, 55, 151–156.

    Article  CAS  Google Scholar 

  7. Masahiko, K., Junji, I., Atsushi, K., Kengo, M., Hiroki, B., Hiroshi, S., Chiaki, O., Seiji, S., Kouichi, K., Mitsuyoshi, U., Akihiko, K., & Yoji, H. (2008). Isoflavoneaglycones production from isoflavone glycosides by display of β-from Aspergillus oryzae on yeast cell surface. Applied Microbiology and Biotechnology, 79, 51–60.

    Article  CAS  Google Scholar 

  8. Yang, S., Wang, L., Yan, Q., Jiang, Z., & Li, L. (2009). Hydrolysis of soybean isoflavone glycosides by a thermostable β-from Paecilomyces thermophila. Food Chemistry, 115, 1247–1252.

    Article  CAS  Google Scholar 

  9. Horii, K., Adachi, T., Matsuda, T., Tanaka, T., Sahara, H., Shibasaki, S., Ogino, C., Hata, Y., Ueda, M., & Kondo, A. (2009). Improvement of isoflavone aglycones production using β-secretory produced in recombinant Aspergillus oryzae. Journal of Molecular Catalysis B: Enzymatic, 59, 297–301.

    Article  CAS  Google Scholar 

  10. Hashimoto, W., Miki, H., Nankai, H., Sato, N., Kawai, S., & Murata, K. (1998). Molecular cloning of two genes for β-D-in Bacillus sp. GL1 and identification of one as a gellan degrading enzyme. Archives of Biochemistry and Biophysics, 360, 1–9.

    Article  CAS  Google Scholar 

  11. Ajisaka, K., Nishida, H., & Fujimoto, H. (1987). The synthesis of oligosaccharides by the reversed hydrolysis reaction of β-at high temperature. Biotechnology Letters, 9, 243–248.

    Article  CAS  Google Scholar 

  12. Christakopoulos, P., Kekos, D., Macris, B. J., Goodenough, P. W., & Bhat, M. K. (1994). Optimization of β-catalysed synthesis of trisaccharides from cellobiose and gentiobiose. Biotechnology Letters, 16, 587–592.

    Article  CAS  Google Scholar 

  13. Otto, R. T., Bornsheuer, U. T., Syldatk, C., & Schmic, R. D. (1998). Synthesis of aromatic n-alkyl-glucoside esters in a coupled β-and lipase reaction. Biotechnology Letters, 20, 437–440.

    Article  CAS  Google Scholar 

  14. Srisomsap, C., Subhasitanont, P., Techasakul, S., Surarit, R., & Svasti, J. (1999). Synthesis of homo- and hetero-oligosaccharides by Thai rose wood β-glucosidase. Biotechnology Letters, 21, 947–951.

    Article  CAS  Google Scholar 

  15. Vic, G., Thomas, D., & Crout, D. H. G. (1997). Solvent effect on enzyme catalysed synthesis of β−D glucosides using the reverse hydrolysis method: application to the preparative-scale synthesis of 2-hydroxybenzyl and octyl-β-D-glucopyranosides. Enzyme and Microbial Technology, 20, 597–603.

    Article  CAS  Google Scholar 

  16. Yan, T. R., & Liau, J. C. (1998). Synthesis of cello oligosaccharides from cellobiose with β-glucosidaseII from Aspergillus niger. Biotechnology Letters, 20, 591–594.

    Article  CAS  Google Scholar 

  17. Yi, Q., Sarney, D. B., Khan, J. A., & Vulfson, E. N. (1998). A novel approach to biotransformations in aqueous-organic-two-phase systems: enzymatic synthesis of alkyl-β-[D]-glucosides using microencapsulated β-glucosidase. Biotechnology and Bioengineering, 60, 385–390.

    Article  CAS  Google Scholar 

  18. Prade, H., Mackenzie, L. F., & Withers, S. G. (1998). Enzymatic synthesis of disaccharides using Agrobectrium sp. Β-glucosidase. Carbohydrate Research, 305, 371–381.

    Article  Google Scholar 

  19. Rosi, I., Vinella, M., & Domezio, M. (1994). Characterization of β-activity in yeasts of enological origin. The Journal of applied bacteriology, 77, 519–527.

    Article  CAS  Google Scholar 

  20. Cordero-Otero, R. R., Ubeda-Iranzo, J. F., Briones-Perez, A. I., Potgieter, N., Arevalo-Villena, M., Pretorius, I. S., & Van Rensburg, P. (2003). Characterization of β-activity produced by enological strains of non-sacccharomyces yeasts. Journal of Food Science, 68, 2564–2569.

    Article  CAS  Google Scholar 

  21. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  22. Arevalo-Villena, M., Ubeda-Iranzo, J. F., & Briones-Perez, A. I. (2007). Enhancement of aroma in white wines using a β-preparation from Debaryomyces pseudopolymorphus (A-77). Food Biotechnology, 21, 181–194.

    Article  CAS  Google Scholar 

  23. Arevalo-Villena, M., Ubeda-Iranzo, J. F., & Briones-Perez, A. I. (2007). Β-activity in wine yeasts: application in enology. Enzyme and Microbial Technology, 40, 420–425.

    Article  CAS  Google Scholar 

  24. Barbosa, A. M., Giese, E. C., Dekker, R. F. H., Borsato, D., Perez, A. I. B., & Iranzo, U. (2010). Extracellular β-production by the yeast Debaryomycespseudopolymorphus UCLM-NS7A: optimization using response surface methodology. New Biotechnology, 27, 374–381.

    Article  CAS  Google Scholar 

  25. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  26. Issam, S. M., Mohamed, G., Dominique, L. M., Thierry, M., Farid, L., & Nejib, M. (2003). A β-glucosidase from Sclerotiniasclerotiorum. Biochemical characterization and use in oligosaccharide synthesis. Applied Biochemistry and Biotechnology, 112, 63–76.

    Article  Google Scholar 

  27. Issam, S. M., Mohamed, G., Dominique, L. M., Thierry, M., Farid, L., Nejib, M., & Sami, F. (2003). Production, purification and biochemical characterization of two β-glucosidases from Sclerotinia sclerotiorum. Applied Biochemistry and Biotechnology, 111, 30–39.

    Article  Google Scholar 

  28. Saha, B. C., & Bothast, R. J. (1996). Production, purification and characterization of a highly glucose-tolerant novel β-glucosidase from Candida peltata. Applied and Environmental Microbiology, 62, 3165–3170.

    CAS  Google Scholar 

  29. Murthy, M., Swaminathan, T., Rakshit, S. K., & Ksugi, Y. (2000). Statistical optimization of lipase catalyzed hydrolysis of methyloleate by response surface methodology. Bioprocess Engineering, 22, 35–39.

    Article  CAS  Google Scholar 

  30. Egli, T., & Quayle, J. R. (1986). Influence of the carbon: nitrogen ratio of the growth medium on the cellular composition and the ability of the methylotrophic yeast Hansenula polymorpha to utilize mixed carbon sources. Journal of General Microbiology, 132, 1779–1788.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University Grants Commission (UGC), Government of India, for providing the fellowship under Special Assistance Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha Bhalchandra Pandit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandit, N.T., Pandit, A.B. Exploration of a Cheaper Carbon Source for Extracellular β-glucosidase Synthesis from Debaryomyces pseudopolymorphus NRRL YB-4229. Appl Biochem Biotechnol 172, 3606–3620 (2014). https://doi.org/10.1007/s12010-014-0781-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0781-x

Keywords

Navigation