Skip to main content
Log in

Nonthermal Effect of Microwave Irradiation in Nonaqueous Enzymatic Esterification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microwave has nonthermal effects on enzymatic reactions, mainly caused by the polarities of the solvents and substrates. In this experiment, a model reaction with caprylic acid and butanol that was catalyzed by lipase from Mucor miehei in alkanes or arenes was employed to investigate the nonthermal effect in nonaqueous enzymatic esterification. With the comparison of the esterification carried by conventional heating and consecutive microwave irradiation, the positive nonthermal effect on the initial reaction rates was found substrate concentration-dependent and could be vanished ostensibly when the substrate concentration was over 2.0 mol L−1. The polar parameter log P well correlates the solvent polarity with the microwave effect, comparing to dielectric constant and assayed solvatochromic solvent polarity parameters. The log P rule presented in conventional heating-enzymatic esterification still fits in the microwaved enzymatic esterification. Alkanes or arenes with higher log P provided positive nonthermal effect in the range of 2 ≤ log P ≤ 4, but yielded a dramatic decrement after log P = 4. Isomers of same log P with higher dielectric constant received stronger positive nonthermal effect. With lower substrate concentration, the total log P of the reaction mixture has no obvious functional relation with the microwave effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MI:

Initial reaction rate of microwaved reactions

CH:

Initial reaction rate of conventional heated reactions

MI/CH:

The microwave effect presented as the ratio of MI to CH

References

  1. Yang, R. J., & Zhao, W. (2010). Journal of Physical Chemistry B, 114, 503–510.

    Article  Google Scholar 

  2. Liaquat, M. (2011). Journal of Molecular Catalysis B: Enzymatic, 68, 59–65.

    Article  CAS  Google Scholar 

  3. Chattopadhyay, S., Karemore, A., Das, S., Deysarkar, A., & Sen, R. (2011). Applied Energy, 88, 1251–1256.

    Article  CAS  Google Scholar 

  4. Gupta, M. N., & Solanki, K. (2011). Bioorganic & Medicinal Chemistry Letters, 21, 2934–2936.

    Article  Google Scholar 

  5. Zhang, M., Ding, M. L., Zhang, T., & Yang, J. M. (2010). Chemical Journal of Chinese Chinese Universities, 31, 612–615.

    Google Scholar 

  6. Kim, I. H., & Lee, S. M. (2006). Journal of Food Science, 71, C378–C382.

    Article  CAS  Google Scholar 

  7. Piyatheerawong, W., Yamane, T., Nakano, H., & Iwasaki, Y. (2006). Journal of the American Oil Chemists’ Society, 83, 603–607.

    Article  CAS  Google Scholar 

  8. Tsuchiya, D., Murakami, Y., Ogoma, Y., Kondo, Y., Uchio, R., & Yamanaka, S. (2005). Journal of Molecular Catalysis B: Enzymatic, 35, 52–56.

    Article  CAS  Google Scholar 

  9. Kojima, Y., Sakuradani, E., & Shimizu, S. (2006). Journal of Bioscience and Bioengineering, 102, 179–183.

    Article  CAS  Google Scholar 

  10. Réjasse, B., Lamare, S., Legoy, M. D., & Besson, T. (2004). Organic & Biomolecular Chemistry, 2, 1086–1089.

    Article  Google Scholar 

  11. La Cara, F., Scarffi, M. R., D’Auria, S., Massa, R., d’Ambrosio, G., Franceschetti, G., Rossi, M., & De Rosa, M. (1999). Bioelectromagnetics, 20, 172–176.

    Article  Google Scholar 

  12. de Souza, R. O. M. A., Antunes, O. A. C., Kroutil, W., & Kappe, C. O. (2009). Journal of Organic Chemistry, 74, 6157–6162.

    Article  Google Scholar 

  13. Besson, T., Rejasse, B., Lamare, S., & Legoy, M. D. (2007). Journal of Enzyme Inhibition and Medicinal Chemistry, 22, 518–526.

    Google Scholar 

  14. Lin, S. S., Wu, C. H., Sun, M. C., Sun, C. M., & Ho, Y. P. (2005). Journal of the American Society for Mass Spectrometry, 16, 581–588.

    Article  CAS  Google Scholar 

  15. Gaber, M. H., El Halim, N. A., & Khalil, W. A. (2005). Bioelectromagnetics, 26, 194–200.

    Article  CAS  Google Scholar 

  16. Huang, W., Xia, Y. M., Gao, H., Fang, Y. J., Wang, Y., & Fang, Y. (2005). Journal of Molecular Catalysis B: Enzymatic, 35, 113–116.

    Article  CAS  Google Scholar 

  17. Laane, C., Boeren, S., Vos, K., & Veeger, C. (1987). Biotechnology and Bioengineering, 30, 81–87.

    Article  CAS  Google Scholar 

  18. Fang, Y., Huang, W., & Xia, Y. M. (2008). Process Biochemistry, 43, 306–310.

    Article  CAS  Google Scholar 

  19. Chaudhary, A. K., Kamat, S. V., Beckman, E. J., Russell, A. J., Nurok, D., Kleyle, R. M., et al. (1996). Journal of the American Chemical Society, 118, 12891–12901.

    Article  CAS  Google Scholar 

  20. Reichardt, C. (2003). Solvents and Solvent Effects in Organic Chemistry, 3rd Edition. Wiley−VCH: Weinheim, Germany, 418–424.

  21. Reichardt, C. (1994). Chemical Reviews, 94, 2319–2358.

    Article  CAS  Google Scholar 

  22. Dong, D. C., & Winnik, M. A. (1984). Canadian Journal of Chemistry, 62, 2560–2565.

    Article  CAS  Google Scholar 

  23. Catalán, J., López, V., Pérez, P., Martin-Villamil, R., & Rodríguez, J. G. (1995). Liebigs Annalen, 1995, 241–252.

    Article  Google Scholar 

  24. Abraham, M. H., Grellier, P. L., Abboud, J. L. M., Doherty, R. M., & Taft, R. W. (1988). Canadian Journal of Chemistry, 66, 2673–2686.

    Article  CAS  Google Scholar 

  25. Muensterer, H., Kresze, G., Lamm, V., & Gieren, A. (1983). The Journal of Organic Chemistry, 48, 2833–2837.

    Article  CAS  Google Scholar 

  26. Bezbradica, D., Mijin, D., Siler-Marinkovic, S., & Knezevic, Z. (2007). Journal of Molecular Catalysis B: Enzymatic, 45, 97–101.

    Article  CAS  Google Scholar 

  27. Min, R., Fang, Y., & Xia, Y. M. (2009). Spectroscopy and Spectral Analysis, 29, 428–431.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Xu Qing at Novozymes (China) Biotechnology Co., Ltd for generously providing lipase. This research work is supported by National Natural Science Foundation of China (31171752), Returned Overseas Chinese Scholars and the Keygrant Project of Chinese Ministry of Education (No 311002) and Research Fund for Doctoral Candidate of Jiangnan University (JUDCF10034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-mei Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, Hd., Sun, Sy., Hu, Xy. et al. Nonthermal Effect of Microwave Irradiation in Nonaqueous Enzymatic Esterification. Appl Biochem Biotechnol 166, 1454–1462 (2012). https://doi.org/10.1007/s12010-012-9539-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9539-5

Keywords

Navigation