Skip to main content
Log in

Kinetic Resolution of (R,S)-2-Butanol Using Enzymatic Synthesis of Esters

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Kinetic resolution of (R,S)-2-butanol using enzymatic synthesis of esters has been studied. (R,S)-2-Butanol is commonly found as a racemic mixture, and the products of its esterification are racemic mixtures too. This work is of great significance in the field of the enzymatic kinetic resolution due to the little information found in literature about the resolution of (R,S)-2-butanol as pure compound. So, this article is a contribution about the enzymatic resolution of (R,S)-2-butanol. The reaction here studied is the esterification/transesterification of (R,S)-2-butanol in organic media (n-hexane) using as biocatalyst the lipase Novozym 435®. The main target of this study is to analyze the influence of certain variables in this reaction. Some of these variables are acyl donor (acids and esters), concentration of substrates, enzyme/substrate ratio, and temperature. The main conclusions of this study are the positive effect of higher substrates concentration (1.5 M) and larger amount of enzyme (13.8 g mol−1 substrate) on kinetic resolution rate but not a very noticeable effect on enantiomeric excesses. The longer the carboxylic acid chain is, the better results are obtained. Besides to achieve a satisfactory kinetic resolution, it is recommendable to select reaction times (180 min) at which the highest substrate enantiomeric excess is reached (~60%). The temperature has not an appreciable influence on the resolution in the range studied (40–60 °C). When an ester (vinyl acetate) is used as acyl donor, the resolution shows better results than when using a carboxylic acid as acyl donor (ees ~ 90% at 90 min). Moreover, Michaelis–Menten parameters, v max and K M, were determined, 0.04 mol 1−1 min−1 and 0.41 mol 1−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kumar, I., Manju, K., & Jolly, R. S. (2001). Tetrahedron-Asymmetry, 12, 1431–1434.

    Article  CAS  Google Scholar 

  2. Kasprzyk-Hordern, B. (2010). Chemical Society Reviews, 39, 4466–4503.

    Article  CAS  Google Scholar 

  3. Fogassy, E., Nógrádi, M., Kozma, D., Egri, G., Pálovics, E., & Kiss, V. (2006). Organic and Biomolecular Chemistry, 4, 3011–3030.

    Article  CAS  Google Scholar 

  4. Fieser, L. F. (1966). Basic organic chemistry. Tokyo: Maruzen.

    Google Scholar 

  5. Zaugg, H. E. (1955). Journal of the American Chemical Society, 77(10), 2910.

    Article  CAS  Google Scholar 

  6. Fujima, Y., Ikunaka, M., Inoue, T., & Matsumoto, J. (2006). Organic Process Research and Development, 10(5), 905–913.

    Article  CAS  Google Scholar 

  7. Wang, Y., Wang, R., Li, Q., Zhang, Z., & Feng, Y. (2009). Journal Molecule Catalysis B: Enzyme, 56, 142–145.

    Article  CAS  Google Scholar 

  8. Patel, R. N. (2008). Coordination Chemistry Reviews, 252, 659–701.

    Article  CAS  Google Scholar 

  9. Romero, M. D., Calvo, L., Alba, C., Habulin, M., Primozic, M., & Knez, Ž. (2005). Journal Supercritical Fluids, 33, 77–84.

    CAS  Google Scholar 

  10. Znez, Ž. (2009). Journal Supercritical Fluids, 47, 357–372.

    Article  Google Scholar 

  11. Yasmin, T., Jiang, T., Han, B., Zhang, J., & Ma, X. (2006). Journal Supercritical Fluids, 41, 27–31.

    CAS  Google Scholar 

  12. De los Ríos, A. P., Hernández-Fernández, F. J., Tomás-Alonso, F., Gómez, D., & Víllora, G. (2008). Process Biochemistry, 43, 892–895.

    Article  Google Scholar 

  13. Fan, Y., & Qian, J. (2010). Journal Molecule Catalysis B: Enzyme, 66, 1–7.

    Article  CAS  Google Scholar 

  14. Lozano, P. (2010). Green Chemistry, 12, 555–569.

    Article  CAS  Google Scholar 

  15. Romero, M. D., Calvo, L., Alba, C., & Daneshfar, A. (2007). Journal of Biotechnology, 127, 269–277.

    Article  CAS  Google Scholar 

  16. Habulin, M., & Knez, Ž. (2009). Journal Molecule Catalysis B: Enzyme, 58, 24–28.

    Article  CAS  Google Scholar 

  17. An, I., Onyeozili, E. N., & Maleczka, R. E., Jr. (2010). Tetrahedron-Asymmetry, 21, 527–534.

    Article  CAS  Google Scholar 

  18. Reigada, J. B., Tcacenco, C. M., Andrade, L. H., Kato, M. J., Porto, A., & Lago, J. H. (2007). Tetrahedron-Asymmetry, 18, 1054–1058.

    Article  CAS  Google Scholar 

  19. Gotor-Fernández, V., Busto, E., & Gotor, V. (2006). Advanced Synthesis and Catalysis, 348, 797–812.

    Article  Google Scholar 

  20. Briggs, G. E., & Haldane, J. B. (1925). Biochemical Journal, 19, 338–339.

    CAS  Google Scholar 

  21. Rotticci, D., Hæffner, F., Orrenius, C., Norin, T., & Hult, K. (1998). Journal Molecule Catalysis B: Enzyme, 5, 267–272.

    Article  CAS  Google Scholar 

  22. Romero, M. D., Calvo, L., Alba, C., Daneshfar, A., & Ghaziaskar, H. S. (2005). Enzyme and Microbial Technology, 37(1), 42–48.

    Article  CAS  Google Scholar 

  23. Ottosson, J., & Hult, K. (2001). Journal Molecule Catalysis B: Enzyme, 11, 1025–1028.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Dolores Romero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, M.D., Gomez, J.M., Diaz-Suelto, B. et al. Kinetic Resolution of (R,S)-2-Butanol Using Enzymatic Synthesis of Esters. Appl Biochem Biotechnol 165, 1129–1140 (2011). https://doi.org/10.1007/s12010-011-9330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9330-z

Keywords

Navigation