Skip to main content
Log in

State of antioxidant systems and phenolic compounds’ production in Hypericum perforatum L. hairy roots

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Hypericum perforatum hairy root clones (HR A–HR O) transformed with Agrobacterium rhizogenes A4 were evaluated for growth characteristics, phenolic compounds production, antioxidant/radical scavenging activity, antioxidant enzymes, and oxidative stress markers. The screening of growth characteristics revealed that HR clones were characterized with higher biomass accumulation, root elongation, and lateral branching in comparison to non-transformed roots. Significant increase of phenolics production in HR clones was related to phenylalanine ammonia lyase activity indicating an up-regulation of phenylpropanoid/flavonoid metabolism. Positive correlation of phenolics, flavonoids, and tannins with antioxidant assays indicated that these secondary metabolites significantly contributed to the antioxidant/radical scavenging properties of HR cultures. Regarding the enzymatic antioxidant state, an enhancement of superoxide dismutase activity in HR lines coincided with decrease in O •−2 production rate, while ascorbate peroxidase and catalase greatly contributed to the reduction of H2O2 levels. The substantial accumulation of malondialdehyde in HR clones indicated an efficiency of antioxidant enzymes to reduce O •−2 and H2O2 at levels that are not deleterious for membrane lipids. These results confirmed the involvement of an efficient antioxidant defense system in the response adjustment of H. perforatum HR cultures to transformation process. Two superior clones denoted as HR B and HR F were selected as fast-growing and high biomass yielding lines with up-regulated phenolic compounds’ production, antioxidant, and radical scavenging activity. Altogether, the best performing H. perforatum HR clones could be proposed as a prospective biotechnological system for scale-up production of antioxidant phenolic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

CUPRAC:

Cupric ion-reducing antioxidant capacity

DPPH:

2,2-Diphenyl-1-picrylhydrazyl radical scavenging activity

DW:

Dry weight

FCA:

Ferrous chelating activity

FW:

Fresh weight

GI:

Growth index

HR:

Hairy roots

H2O2 SA:

Hydrogen peroxide scavenging activity

LPI:

Lipid peroxidation inhibition

MDA:

Malondialdehyde

NO SA:

Nitric oxide scavenging activity

NSR:

Number of secondary roots

NTR:

Non-transformed roots

O •−2 SA:

Superoxide anion scavenging activity

PAL:

Phenylalanine ammonia lyase

PPO:

Polyphenol oxidase

PX:

Guaiacol peroxidase

RL:

Root length

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TCT:

Total condensed tannins

TF:

Total flavonoids

TFA:

Total flavan-3-ols

TP:

Total phenolics

TPA:

Total phenolic acids

References

  • Aebi H (1984) [13] Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Apak R, Güçlü K, Özyürek M, Karademir SE (2004) Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 52(26):7970–7981

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Ravishankar GA (2003) Synergistic effect of auxins and polyamines in hairy roots of Cichorium intybus L. during growth, coumarin production and morphogenesis. Acta Physiol Plant 25(2):193–208

    Article  CAS  Google Scholar 

  • Baque MA, Hahn EJ, Paek KY (2010) Growth, secondary metabolite production and antioxidant enzyme response of Morinda citrifolia adventitious root as affected by auxin and cytokinin. Plant Biotechnol Rep 4(2):109–116

    Article  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset CLWT (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28(1):25–30

    Article  CAS  Google Scholar 

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26(4):318–324

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov VP, Gorpenchenko TY, Veremeichik GN, Shkryl YN, Tchernoded GK, Bulgakov DV, Aminin DL, Zhuravlev YN (2012) The rolB gene suppresses reactive oxygen species in transformed plant cells through the sustained activation of antioxidant defense. Plant Physiol 158:1371–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra S (2012) Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol Lett 34(3):407–415

    Article  CAS  PubMed  Google Scholar 

  • Chung IM, Rekha K, Rajakumar G, Thiruvengadam M (2016) Production of glucosinolates, phenolic compounds and associated gene expression profiles of hairy root cultures in turnip (Brassica rapa ssp. rapa). 3 Biotech 6(2):175. https://doi.org/10.1007/s13205-016-0492-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui XH, Murthy HN, Jin YX, Yim YH, Kim JY, Paek KY (2011) Production of adventitious root biomass and secondary metabolites of Hypericum perforatum L. in a balloon type airlift reactor. Bioresour Technol 102(21):10072–10079

    Article  CAS  PubMed  Google Scholar 

  • Das JR, Bhat SG, Gowda LR (1997) Purification and characterization of a polyphenol oxidase from the kew cultivar of Indian pineapple fruit. J Agric Food Chem 45(6):2031–2035

    Article  CAS  Google Scholar 

  • Decker EA, Welch B (1990) Role of ferritin as a lipid oxidation catalyst in muscle food. J Agric Food Chem 38(3):674–677

    Article  CAS  Google Scholar 

  • Di Guardo A, Cellarova E, Koperdáková J, Pistelli L, Ruffoni B, Allavena A, Giovannini A (2003) Hairy root induction and plant regeneration in Hypericum perforatum L. J Genet Breed 57(3):269–278

    Google Scholar 

  • Dilshad E, Zafar S, Ismail H, Waheed MT, Cusido RM, Palazon J, Mirza B (2016) Effect of rol genes on polyphenols biosynthesis in Artemisia annua and their effect on antioxidant and cytotoxic potential of the plant. Appl Biochem Biotechnol 179(8):1456–1468

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MS, Wang L (2002) The phenylpropanoid pathway and plant defence-a genomics perspective. Mol Plant Pathol 3(5):371–390

    Article  CAS  PubMed  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70(2):616–620

    Article  CAS  PubMed  Google Scholar 

  • Fathi H, Ebrahimzadeh MA (2013) Antioxidant and free radical scavenging activities of Hypericum perforatum L. (st. John’s wort). Int J For Soil Eros 3(2):68–72

    Google Scholar 

  • Fraisse D, Carnat A, Viala D, Pradel P, Besle JM, Coulon JB, Felgines C, Lamaison JL (2007) Polyphenolic composition of a permanent pasture: variations related to the period of harvesting. J Sci Food Agric 87(13):2427–2435

    Article  CAS  Google Scholar 

  • Franklin G, Conceição LF, Kombrink E, Dias ACP (2008) Hypericum perforatum plant cells reduce Agrobacterium viability during co-cultivation. Planta 227(6):1401–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin G, Conceição LF, Kombrink E, Dias ACP (2009) Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry 70(1):60–68

    Article  CAS  PubMed  Google Scholar 

  • Gadzovska Simic S, Tusevski O, Maury S, Delaunay A, Joseph C, Hagège D (2014) Effects of polysaccharide elicitors on secondary metabolite production and antioxidant response in Hypericum perforatum L. shoot cultures. Sci World J. https://doi.org/10.1155/2014/609649

    Article  Google Scholar 

  • Gadzovska Simic S, Tusevski O, Maury S, Delaunay A, Lainé E, Joseph C, Hagège D (2015a) Polysaccharide elicitors enhance phenylpropanoid and naphtodianthrone production in cell suspension cultures of Hypericum perforatum. Plant Cell Tissue Org 122(3):649–663

    Article  CAS  Google Scholar 

  • Gadzovska Simic S, Tusevski O, Maury S, Hano C, Delaunay A, Chabbert B, Lamblin F, Lainé E, Joseph C, Hagège D (2015b) Fungal elicitor-mediated enhancement in phenylpropanoid and naphtodianthrone contents of Hypericum perforatum L. cell cultures. Plant Cell Tissue Org 122(1):213–226

    Article  CAS  Google Scholar 

  • Gadzovska S, Maury S, Ounnar S, Righezza M, Kascakova S, Refregiers M, Spasenoski M, Joseph C, Hagège D (2005) Identification and quantification of hypericin and pseudohypericin in different Hypericum perforatum L. in vitro cultures. Plant Physiol Biochem 43(6):591–601

    Article  CAS  PubMed  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Joseph C, Hagege D (2007) Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell Tissue Org 89(1):1–13

    Article  CAS  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Hagège D, Courtois D, Joseph C (2013) The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell Tissue Org 113(1):25–39

    Article  CAS  Google Scholar 

  • Gadzovska-Simic S, Tusevski O, Antevski S, Atanasova-Pancevska N, Petreska J, Stefova M, Dz Kungulovski, Spasenoski M (2012) Secondary metabolite production in Hypericum perforatum L. cell suspensions upon elicitation with fungal mycelia from Aspergillus flavus. Arch Biol Sci 64(1):113–121

    Article  Google Scholar 

  • Gamborg OL, Miller R, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158

    Article  CAS  PubMed  Google Scholar 

  • Georgiev VG, Weber J, Kneschke EM, Denev PN, Bley T, Pavlov AI (2010) Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit dark red. Plant Foods Hum Nutr 65(2):105–111

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Pandey P, Singh S, Singh DK, Saxena A, Luqman S, Bawankule DU, Banerjee S (2016) Advances in Boerhaavia diffusa: a valuable pursuit for identifying strain sensitivity and up-scaling factors to refine metabolite yield and bioactivity potentials. Protoplasma 253(4):1145–1158

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Hemeda HM, Klein BP (1990) Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci 55(1):184–185

    Article  CAS  Google Scholar 

  • Komarovská H, Giovannini A, Košuth J, Čellárová E (2009) Agrobacterium rhizogenes-mediated transformation of Hypericum tomentosum L. and Hypericum tetrapterum Fries. Z Naturforsch C 64(11–12):864–868

    Article  PubMed  Google Scholar 

  • Li YG, Tanner G, Larkin P (1996) The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J Sci Food Agric 70(1):89–101

    Article  CAS  Google Scholar 

  • Liu F, Ooi VEC, Chang ST (1997) Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci 60(10):763–771

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zhu J, Liu Z, Li L, Pan R, Jin L (2002) Exogenous auxin effects on growth and phenotype of normal and hairy roots of Pueraria lobata (Willd.) Ohwi. Plant Growth Regul 38(1):37–43

    Article  CAS  Google Scholar 

  • Makris DP, Boskou G, Andrikopoulos NK (2007) Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J Food Compos Anal 20(2):125–132

    Article  CAS  Google Scholar 

  • Marcocci L, Maguire JJ, Droylefaix MT, Packer L (1994) The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem Biophys Res Commun 201(2):748–755

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (2006) St. John’s wort (Hypericum perforatum L.): challenges and strategies for production of chemically-consistent plants. Can J Plant Sci 86(3):765–771

    Article  CAS  Google Scholar 

  • Nahrstedt A, Butterweck V (2010) Lessons learned from herbal medicinal products: the example of St. John’s Wort. J Nat Prod 73(5):1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Nikravesh F, Khavari-Nejad RA, Rahimian H, Fahimi H (2012) Study of antioxidant enzymes activity and isozymes pattern in hairy roots and regenerated plants in Nicotiana tabacum. Acta Physiol Plant 34(2):419–427

    Article  CAS  Google Scholar 

  • Orčić DZ, Mimica-Dukić NM, Francišković MM, Petrović SS, Jovin EĐ (2011) Antioxidant activity relationship of phenolic compounds in Hypericum perforatum L. Chem Cent J 5(1):1–8

    Article  Google Scholar 

  • Porter LJ, Hrstich LN, Chan BG (1986) The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25(1):223–230

    Article  CAS  Google Scholar 

  • Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaujon I (2007) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci 12(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10(6):1003–1008

    Article  CAS  PubMed  Google Scholar 

  • Saddiqe Z, Naeem I, Maimoona A (2010) A review of the antibacterial activity of Hypericum perforatum L. J Ethnopharmacol 131(3):511–521

    Article  CAS  PubMed  Google Scholar 

  • Sergiev I, Alexieva V, Karanov E (1997) Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Compt Rend Acad Bulg Sci 51(3):121–124

    Google Scholar 

  • Shohael AM, Chakrabarty D, Ali MB, Yu KW, Hahn EJ, Lee HL, Paek KY (2006) Enhancement of eleutherosides production in embryogenic cultures of Eleutherococcus sessiliflorus in response to sucrose-induced osmotic stress. Process Biochem 41(3):512–518

    Article  CAS  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16(3):144–158

    CAS  Google Scholar 

  • Srivastava S, Conlan XA, Adholeya A, Cahill DM (2016) Elite hairy roots of Ocimum basilicum as a new source of rosmarinic acid and antioxidants. Plant Cell Tissue Org 126(1):19–32

    Article  CAS  Google Scholar 

  • Tang W, Newton RJ (2004) Increase of polyphenol oxidase and decrease of polyamines correlate with tissue browning in Virginia pine (Pinus virginiana Mill.). Plant Sci 167(3):621–628

    Article  CAS  Google Scholar 

  • Thiruvengadam M, Praveen N, Kim EH, Kim SH, Chung IM (2014) Production of anthraquinones, phenolic compounds and biological activities from hairy root cultures of Polygonum multiflorum Thunb. Protoplasma 251(3):555–566

    Article  CAS  PubMed  Google Scholar 

  • Thwe AA, Kim JK, Li X, Kim YB, Uddin MR, Kim SJ, Suzuki T, Park NI, Park SU (2013) Metabolomic analysis and phenylpropanoid biosynthesis in hairy root culture of tartary buckwheat cultivars. PLoS One 8(6):e65349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari RK, Trivedi M, Guang ZC, Guo GQ, Zheng GC (2008) Agrobacterium rhizogenes mediated transformation of Scutellaria baicalensis and production of flavonoids in hairy roots. Biol Plantarum 52(1):26–35

    Article  CAS  Google Scholar 

  • Tusevski O, Petreska Stanoeva J, Stefova M, Gadzovska Simic S (2013a) Phenolic profile of dark-grown and photoperiod-exposed Hypericum perforatum L. hairy root cultures. Sci World J. https://doi.org/10.1155/2013/602752

    Article  Google Scholar 

  • Tusevski O, Stanoeva J, Stefova M, Kungulovski D, Pancevska N, Sekulovski N, Panov S, Gadzovska Simic S (2013b) Hairy roots of Hypericum perforatum L.: a promising system for xanthone production. Open Life Sci 8(10):1010–1022

    CAS  Google Scholar 

  • Tusevski O, Stanoeva JP, Stefova M, Pavokovic D, Gadzovska Simic S (2014) Identification and quantification of phenolic compounds in Hypericum perforatum L. transgenic shoots. Acta Physiol Plant 36(10):2555–2569

    Article  CAS  Google Scholar 

  • Tusevski O, Stanoeva JP, Stefova M, Gadzovska Simic S (2015) Agrobacterium enhances xanthone production in Hypericum perforatum cell suspensions. Plant Growth Regul 76(2):199–210

    Article  CAS  Google Scholar 

  • Tusevski O, Stanoeva JP, Markoska E, Brndevska N, Stefova M, Gadzovska Simic S (2016) Callus cultures of Hypericum perforatum L. a novel and efficient source for xanthone production. Plant Cell Tissue Org 125(2):309–319

    Article  CAS  Google Scholar 

  • Tusevski O, Vinterhalter B, Milošević DK, Soković M, Ćirić A, Vinterhalter D, Zdravković Korać S, Petreska Stanoeva J, Stefova M, Gadzovska Simic S (2017) Production of phenolic compounds, antioxidant and antimicrobial activities in hairy root and shoot cultures of Hypericum perforatum L. Plant Cell Tiss Org 128(3):589–605

    Article  CAS  Google Scholar 

  • Vinterhalter B, Ninković S, Cingel A, Vinterhalter D (2006) Shoot and root culture of Hypericum perforatum L. transformed with Agrobacterium rhizogenes A4M70GUS. Biol Plantarum 50(4):767–770

    Article  Google Scholar 

  • Vinterhalter B, Zdravković-Korać S, Mitić N, Bohanec B, Vinterhalter D, Savić J (2015) Effect of sucrose on shoot regeneration in Agrobacterium transformed Hypericum perforatum L. roots. Acta Physiol Plant 37(2):1–12

    Article  CAS  Google Scholar 

  • Wang JW, Zheng LP, Zhang B, Zou T (2009) Stimulation of artemisinin synthesis by combined cerebroside and nitric oxide elicitation in Artemisia annua hairy roots. Appl Microbiol Biotechnol 85(2):285–292

    Article  CAS  PubMed  Google Scholar 

  • Weremczuk-Jeżyna I, Grzegorczyk-Karolak I, Frydrych B, Królicka A, Wysokińska H (2013) Hairy roots of Dracocephalum moldavica: rosmarinic acid content and antioxidant potential. Acta Physiol Plant 35(7):2095–2103

    Article  CAS  Google Scholar 

  • Xu MJ, Dong JF, Zhu MY (2005) Nitric oxide mediates the fungal elicitor-induced hypericin production of Hypericum perforatum cell suspension cultures through a jasmonic-acid-dependent signal pathway. Plant Physiol 139(2):991–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zubrická D, Mišianiková A, Henzelyová J, Valletta A, De Angelis G, D’Auria FD, Simonetti G, Pasqua G, Čellárová E (2015) Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans. Plant Cell Rep 34(11):1953–1962

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Gadzovska Simic.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by A. Krolicka.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tusevski, O., Petreska Stanoeva, J., Stefova, M. et al. State of antioxidant systems and phenolic compounds’ production in Hypericum perforatum L. hairy roots. Acta Physiol Plant 41, 132 (2019). https://doi.org/10.1007/s11738-019-2919-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-019-2919-5

Keywords

Navigation