Skip to main content
Log in

Production of phenolic compounds, antioxidant and antimicrobial activities in hairy root and shoot cultures of Hypericum perforatum L.

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Three hairy root clones of Hypericum perforatum (HR 2, HR 15 and HR 27) transformed with Agrobacterium rhizogenes A4M70GUS and their corresponding regenerated shoot culture clones (HRRS) were compared for differences in growth, production of phenolic compounds, antioxidant and antimicrobial activities. Transgenic clones were selected on the basis of morphological evaluation, genetic and molecular analyses. The clone HR 2 had the highest biomass accumulation, while HR 27 showed the highest shoot regeneration potential. The total phenolics and flavan-3-ols were enhanced in all tested transgenic cultures, while total flavonoids and hypericins were augmented in HRRS clones compared to non-transformed shoots. The HRRS clones produced substantial amounts of chlorogenic acid and 3-p-coumaroylquinic acid. Regarding the flavonoids, they produced significant contents of luteolin hexoside (HRRS 2), quercitrin and quercetin (HRRS 15) and isoquercetin (HRRS 27), while HR 2 and 15 accumulated 4-O-methylkaempferol-O-hexoside and quercetin 6-C-glucoside, respectively. The HR 15 was promising for the production of catechin and procyanidin derivatives and together with its HRRS clone exhibited a high potential for hyperforin and adhyperforin production. All identified naphtodianthrones were confirmed in HRRS 2 and 15 clones. Among xanthones, mangiferin was found as the major compound in HRRS, while trihydroxy-1-metoxy-C-prenyl xanthone was dominant in HR clones. Antimicrobial activity of transgenic cultures revealed that HRRS 15 strongly inhibited the growth of Bacillus cereus, Micrococcus flavus, Pseudomonas aeruginosa and Escherichia coli. Altogether, H. perforatum HR and HRRS cultures could be proposed as promising experimental systems for enhanced production of phenolic compounds with antioxidant and antibacterial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DW:

Dry weight

FW:

Fresh weight

GI:

Growth index

HR:

Hairy roots

HRRS:

Hairy root-regenerated shoots

Hyp:

Hypericin

MBC:

Minimal bactericidal concentration

MIC:

Minimal inhibitory concentration

NEAOP:

Non-enzymatic antioxidant properties

NRS:

Number of regenerated shoots per explant

NS:

Number of regenerated shoots per gram fresh weight

NTR:

Non-transformed roots

NTS:

Non-transformed shoots

TA:

Total anthocyanins

TF:

Total flavonoids

TFL:

Total flavanols

THyp:

Total hypericins

TP:

Total phenolics

References

  • Adelberg J (2008) Agitated, thin-film of liquid media for efficient micropopagation. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering. Springer, Dordrecht, pp 101–117

    Google Scholar 

  • Avato P, Raffo F, Guglielmi G, Vitali C, Rosato A (2004) Extracts from St. John’s Wort and their antimicrobial activity. Phytother Res 18:230–232

    Article  CAS  PubMed  Google Scholar 

  • Bansal M, Kumar A, Reddy MS (2014) Influence ofAgrobacterium rhizogenesstrains on hairy root induction and ‘bacoside A’production fromBacopa monnieri (L.) Wettst. Acta. Physiol Plant 36:2793–2801

    CAS  Google Scholar 

  • Bertoli A, Giovannini A, Ruffoni B, Di Guardo A, Spinelli G, Mazzetti M, Pistelli L (2008) Bioactive constituent production in St. John’s wort in vitro hairy roots. Regenerated plant lines. J Agric Food Chem 56:5078–5082

    Article  CAS  PubMed  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset CLWT (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  • Bruni R, Sacchetti G (2009) Factors affecting polyphenol biosynthesis in wild and field grown St. John’s Wort (Hypericum perforatum L. Hypericaceae/Guttiferae). Molecules 14:682–725

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov VP, Aminin DL, Shkryl YN, Gorpenchenko TY, Veremeichik GN, Dmitrenok PS, Zhuravlev YN (2008) Suppression of reactive oxygen species and enhanced stress tolerance in Rubia cordifolia cells expressing therolConcogene. Mol Plant Microbe Interact 21:1561–1570

    Article  CAS  PubMed  Google Scholar 

  • Büter KB, Büter B (2002) Ontogenetic variation regarding hypericin and hyperforin levels in four accessions of Hypericum perforatum L. J Herbs Spices Med Plants 9:95–100

    Article  Google Scholar 

  • Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2006) Spontaneous plant regeneration in transformed roots and calli fromTylophora indica : changes in morphological phenotype and tylophorine accumulation associated with transformation byAgrobacterium rhizogenes. Plant Cell Rep 25:1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Conceiçao LF, Ferreres F, Tavares RM, Dias AC (2006) Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochemistry 67:149–155

    Article  PubMed  Google Scholar 

  • Conforti F, Statti GA, Tundis R, Bianchi A, Agrimonti C, Sacchetti G, Andreotti E, Menichini F, Poli F (2005) Comparative chemical composition and variability of biological activity of methanolic extracts fromHypericum perforatum L. Nat Prod Res 19:295–303

    Article  CAS  PubMed  Google Scholar 

  • Crockett SL, Robson NK (2011) Taxonomy and chemotaxonomy of the genus Hypericum. Med Aromat Plant Sci Biotechnol 5(Special Issue 1):1

    PubMed  PubMed Central  Google Scholar 

  • Cui XH, Chakrabarty D, Lee EJ, Paek KY (2010) Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresource Technol 101:4708–4716

    Article  CAS  Google Scholar 

  • Di Guardo A, Čellárová E, Koperdáková J, Pistelli L, Ruffoni B, Allavena A, Giovannini A (2003) Hairy roots induction and plant regeneration in Hypericum perforatum L. J Genet Breed 57:269–278

    CAS  Google Scholar 

  • Dias AC, Tomás-Barberán FA, Fernandes-Ferreira M, Ferreres F (1998) Unusual flavonoids produced by callus of Hypericum perforatum. Phytochemistry 48:1165–1168

    Article  CAS  Google Scholar 

  • Dias ACP, Seabra RM, Andrade PB, Fernandes-Ferreira M (1999) The development and evaluation of an HPLC-DAD method for the analysis of the phenolic fractions from in vivo and in vitro biomass of Hypericum species. J Liq Chromatogr Relat Technol 22:215–227

    Article  CAS  Google Scholar 

  • European Pharmacopoeia (2008) “St. John’s wort,” in European pharmacopoeia. Council of Europe, Strasbourg, pp 2958–2959

    Google Scholar 

  • Franklin G, Conceição LF, Kombrink E, Dias ACP (2008) Hypericum perforatumplant cells reduce Agrobacterium viability during co-cultivation. Planta 227:1401–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin G, Conceição LF, Kombrink E, Dias ACP (2009) Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry 70:60–68

    Article  CAS  PubMed  Google Scholar 

  • Gadzovska Simic S, Tusevski O, Maury S, Hano C, Delaunay A, Chabbert B, Lamblin F, Lainé E, Joseph C, Hagege D (2015a) Fungal elicitor-mediated enhancement in phenylpropanoid and naphtodianthrone contents of Hypericum perforatum L. cell cultures. Plant Cell Tissue Org 122:213–226

    Article  CAS  Google Scholar 

  • Gadzovska Simic S, Tusevski O, Maury S, Delaunay A, Lainé E, Joseph C, Hagège D (2015b) Polysaccharide elicitors enhance phenylpropanoid and naphtodianthrone production in cell suspension cultures ofHypericum perforatum. Plant Cell Tissue Org 122:649–663

    Article  CAS  Google Scholar 

  • Gaid M, Haas P, Beuerle T, Scholl S, Beerhues L (2016) Hyperforin production in Hypericum perforatum root cultures. J Biotechnol 222:47–55

    Article  CAS  PubMed  Google Scholar 

  • Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plantin vitrosystems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185

    Article  CAS  PubMed  Google Scholar 

  • Georgiev VG, Weber J, Kneschke EM, Denev PN, Bley T, Pavlov AI (2010) Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit dark red. Plant Foods Hum Nutr 65:105–111

    Article  CAS  PubMed  Google Scholar 

  • Hänel H, Raether W (1988) A more sophisticated method of determining the fungicidal effect of water-insoluble preparations with a cell harvester, using miconazole as an example./Eine verbesserte Methode zur Bestimmung der Fungizidie von wasserunlöslichen Präparaten mit Hilfe eines Zellerntegerätes am Beispiel von Miconazol. Mycoses 31:148–154

    Article  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karppinen K, Hokkanen J, Tolonen A, Mattila S, Hohtola A (2007) Biosynthesis of hyperforin and adhyperforin from amino acid precursors in shoot cultures of Hypericum perforatum. Phytochemistry 68:1038–1045

    Article  CAS  PubMed  Google Scholar 

  • Komarovská H, Giovannini A, Košuth J, Čellárová E (2009) Agrobacterium rhizogenes-mediated transformation of Hypericum tomentosum L. and Hypericum tetrapterum fries. Z Naturforsch C 64:864–868

    Article  PubMed  Google Scholar 

  • Komarovská H, Košuth J, Giovannini A, Smelcerovic A, Zuehlke S, Čellárová E (2010) Effect of the number ofrolgenes integrations on phenotypic variation in hairy root-derived Hypericum perforatum L. plants. Z Naturforsch C 65:701–712

    Article  PubMed  Google Scholar 

  • Koperdáková J, Komarovská H, Košuth J, Giovannini A, Čellárová E (2009) Characterization of hairy root-phenotype in transgenic Hypericum perforatum L. clones. Acta. Physiol Plant 31:351–358

    Google Scholar 

  • Kulisic T, Radonic A, Katalinic V, Milos M (2004) Use of different methods for testing antioxidative activity of oregano essential oil. Food Chem 85:633–640

    Article  CAS  Google Scholar 

  • Kwiecień I, Szydłowska A, Kawka B, Beerhues L, Ekiert H (2015) Accumulation of biologically active phenolic acids in agitated shoot cultures of three Hypericum perforatum cultivars: ‘Elixir’, ‘Helos’ and ‘Topas’. Plant Cell Tissue Org 123:273–281

    Article  Google Scholar 

  • Lim FL, Yam MF, Asmawi MZ, Chan LK (2013) Elicitation of Orthosiphon stamineus cell suspension culture for enhancement of phenolic compounds biosynthesis and antioxidant activity. Ind Crops Prod 50:436–442

    Article  CAS  Google Scholar 

  • Lloyd G, McCown B (1981) Commercially feasible micropropagation of mountain laurel,Kalmia latifoliaby use of shoot tip culture. Proc Int Plant Propag Soc 30:421–427

    Google Scholar 

  • Mašković PZ, Mladenović JD, Cvijović MS, Aćamović-Đoković G, Solujić SR, Radojković MM (2011) Phenolic content, antioxidant and antifungal activities of acetonic, ethanolic and petroleum ether extracts of Hypericum perforatum L. Hem Ind 65:159–164

    Article  Google Scholar 

  • Mazandarani M, Yassaghi S, Rezaei MB, Mansourian AR, Ghaemi EO (2007) Ethnobotany and antibacterial activities of two endemic species ofHypericumin North-East of Iran. Asian J Plant Sci 6:354–358

    Article  Google Scholar 

  • Mehrotra S, Goel MK, Rahman LU, Kukreja AK (2013) Molecular and chemical characterization of plants regenerated from Ri-mediated hairy root cultures of Rauwolfia serpentina. Plant Cell Tissue Org 114:31–38

    Article  CAS  Google Scholar 

  • Mulinacci N, Giaccherini C, Santamaria AR, Caniato R, Ferrari F, Valletta A, Vincieri FF, Pasqua G (2008) Anthocyanins and xanthones in the calli and regenerated shoots of Hypericum perforatum var. angustifolium (sin. Fröhlich) Borkh. Plant Physiol Biochem 46:414–420

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (2006) St. John’s wort (Hypericum perforatum L.): challenges and strategies for production of chemically consistent plants. Can J Plant Sci 86:765–771

    Article  CAS  Google Scholar 

  • Murthy HN, Kim YS, Park SY, Paek KY (2014) Hypericins: biotechnological production from cell and organ cultures. Appl Microbiol Biotechnol 98:9187–9198

    Article  CAS  PubMed  Google Scholar 

  • Nahrstedt A, Butterweck V (2010) Lessons learned from herbal medicinal products: the example of St. John’s wort. J Nat Prod 73:1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Yamakawa T (2004) Effect of medium composition on the production of anthocyanins by hairy root cultures ofIpomoea batatas. Plant Biotechnol 21:411–414

    Article  CAS  Google Scholar 

  • Park S, Kim D (1993) Significance of fresh weight to dry cell weight ratio in plant cell suspension. Biotechnol Tech 9:627–630

    Article  Google Scholar 

  • Pasqua G, Avato P, Monacelli B, Santamaria AR, Argentieri MP (2003) Metabolites in cell suspension cultures, calli, and in vitro regenerated organs of Hypericum perforatum cv. Topas. Plant Sci 165:977–982

    Article  CAS  Google Scholar 

  • Qian J, Wu J, Yao B, Lu Y (2012) Preparation of a polyclonal antibody against hypericin synthase and localization of the enzyme in red-pigmented Hypericum perforatum L. plantlets. Acta Biochim Pol 59:639–645

    CAS  PubMed  Google Scholar 

  • Roychowdhury D, Ghosh B, Chaubey B, Jha S (2013) Genetic and morphological stability of 6-year-old transgenic Tylophora indica plants. Nucleus 56:81–89

    Article  Google Scholar 

  • Saddiqe Z, Naeem I, Maimoona A (2010) A review of the antibacterial activity of Hypericum perforatum L. J Ethnopharmacol 131:511–521

    Article  CAS  PubMed  Google Scholar 

  • Shkryl YN, Veremeichik GN, Bulgakov VP, Tchernoded GK, Mischenko NP, Fedoreyev SA, Zhuravlev YN (2008) Individual and combined effects of therolA, B, andCgenes on anthraquinone production inRubia cordifoliatransformed calli. Biotechnol Bioeng 100:118–125

    Article  CAS  PubMed  Google Scholar 

  • Soelberg J, Jørgensen LB, Jäger AK (2007) Hyperforin accumulates in the translucent glands of Hypericum perforatum. Ann Bot 99:1097–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon D, Adams J, Graves N (2013) Economic evaluation of St. John’s wort (Hypericum perforatum) for the treatment of mild to moderate depression. J Affect Disord 148:228–234

    Article  PubMed  Google Scholar 

  • Sooriamuthu S, Varghese RJ, Bayyapureddy A, John SST, Narayanan R (2013) Light-induced production of antidepressant compounds in etiolated shoot cultures of Hypericum hookerianum Wight & Arn (Hypericaceae). Plant Cell Tissue Org 115:169–178

    Article  CAS  Google Scholar 

  • Thiruvengadam M, Praveen N, John KM, Yang YS, Kim SH, Chung IM (2014) Establishment of Momordica charantiahairy root cultures for the production of phenolic compounds and determination of their biological activities. Plant Cell Tissue Org 118:545–557

    Article  CAS  Google Scholar 

  • Tian F, Li B, Ji B, Yang J, Zhang G, Chen Y, Luo Y (2009) Antioxidant and antimicrobial activities of consecutive extracts fromGalla chinensis: the polarity affects the bioactivities. Food Chem 113:173–179

    Article  CAS  Google Scholar 

  • Tusevski O, Petreska Stanoeva J, Stefova M, Kungulovski D, Atanasova Pancevska N, Sekulovski N, Panov S, Gadzovska Simic S (2013a) Hairy roots of Hypericum perforatum L.: a promising system for xanthone production. Cent Eur J Biol 8:1010–1022

    CAS  Google Scholar 

  • Tusevski O, Petreska Stanoeva J, Stefova M, Gadzovska Simic S (2013b) Phenolic profile of dark-grown and photoperiod-exposed Hypericum perforatum L. hairy root cultures. Sci World J. doi:10.1155/2013/602752

    Google Scholar 

  • Tusevski O, Petreska Stanoeva J, Stefova M, Pavokovic D, Gadzovska Simic S (2014a) Identification and quantification of phenolic compounds in Hypericum perforatum L. transgenic shoots. Acta. Physiol Plant 36:2555–2569

    CAS  Google Scholar 

  • Tusevski O, Petreska Stanoeva J, Stefova M, Gadzovska Simic S (2014b) Agrobacterium enhances xanthone production in Hypericum perforatum cell suspensions. Plant Growth Regul 76:199–210

    Article  Google Scholar 

  • Tusevski O, Petreska Stanoeva J, Markoska E, Brndevska N, Stefova M, Gadzovska Simic S (2016) Callus cultures of Hypericum perforatum L. a novel and efficient source for xanthone production. Plant Cell, Tiss Org 125:309–319

    CAS  Google Scholar 

  • Vinterhalter B, Ninković S, Cingel A, Vinterhalter D (2006) Shoot and root culture of Hypericum perforatum L. transformed with Agrobacterium rhizogenes A4M70GUS. Biol Plant 50:767–770

    Article  Google Scholar 

  • Vinterhalter B, Zdravković-Korać S, Mitić N, Bohanec B, Vinterhalter D, Savić J (2015) Effect of sucrose on shoot regeneration in Agrobacterium transformed Hypericum perforatum L. roots. Acta. Physiol Plant 37:1–12

    CAS  Google Scholar 

  • Weremczuk-Jeżyna I, Grzegorczyk-Karolak I, Frydrych B, Królicka A, Wysokińska H (2013) Hairy roots of Dracocephalum moldavica: rosmarinic acid content and antioxidant potential. Acta Physiol Plant 35:2095–2103

    Article  Google Scholar 

  • Williams FB, Sander LC, Wise SA, Girard J (2006) Development and evaluation of methods for determination of naphtodianthrones and flavonoids in St. John’s Wort. J Chromatogr A 1115:93–102

    Article  CAS  PubMed  Google Scholar 

  • Wu SQ, Yu XK, Lian ML, Park SY, Piao XC (2014) Several factors affecting hypericin production ofHypericum perforatumduring adventitious root culture in airlift bioreactors. Acta Physiol Plant 36:975–981

    Article  CAS  Google Scholar 

  • Yilmaz Y, Toledo RT (2004) Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J Agric Food Chem 52:255–260

    Article  CAS  PubMed  Google Scholar 

  • Zobayed SMA, Murch SJ, Rupasinghe HPV, Saxena PK (2004) In vitroproduction and chemical characterization of St. John’s wort (Hypericum perforatum L. cv ‘New Stem’). Plant Sci 166:333–340

    Article  CAS  Google Scholar 

  • Zubrická D, Mišianiková A, Henzelyová J, Valletta A, De Angelis G, D’Auria FD, Simonetti G, Pasqua G, Čellárová E (2015) Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans. Plant Cell Rep 34:1953–1962

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Serbian Ministry of Education, Science and Technological Development Grant Nos. 173015 and 173032.

Author contributions

MOT, Dr. SGS, Dr. JPS and Dr. MS performed phytochemical analyses and described the results with respect to essential questions. Dr. BV, Dr. DKM, Dr. MS, Dr. AĆ, Dr. SZK and Dr. DV obtained H. perforatum transgenic clones and performed antimicrobial activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Gadzovska Simic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tusevski, O., Vinterhalter, B., Krstić Milošević, D. et al. Production of phenolic compounds, antioxidant and antimicrobial activities in hairy root and shoot cultures of Hypericum perforatum L.. Plant Cell Tiss Organ Cult 128, 589–605 (2017). https://doi.org/10.1007/s11240-016-1136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-1136-9

Keywords

Navigation