Skip to main content

Advertisement

Log in

The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L.

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Hypericum perforatum is a well known medicinal plant. The main pharmacological properties are due to the presence of naphtodianthrones such as hypericin and pseudohypericin. Unfortunately the levels of these compounds vary under different environmental conditions. Elicitation of in vitro cultures is a useful approach to enhance and extend production of desirable products. Therefore, the effects of salicylic acid were characterized on different explants of H. perforatum L. (cells, calli and shoots) cultured in vitro. It appears at first that salicylic acid did not affect growth and development of these explants. In addition, the production of both hypericin and pseudohypericin has doubled in elicited cell suspension cultures but not in the two other cultures. Furthermore, phenylpropanoids that are among the most frequently observed metabolites affected upon treatment of in vitro culture material with elicitors, were produced and the enzymatic activities of phenylalanine ammonia lyase and of chalcone isomerase were stimulated upon elicitation. These effects were dependant of the type of in vitro culture, the concentration of salicylic acid and the duration post-elicitation. The H. perforatum cells were globally more sensitive to salicylic acid elicitation when maintained in an undifferentiated state and particularly in cell suspension cultures. In the absence of glands considered as the sites of naphtodianthrones biosynthesis, cells and calli were capable of producing these compounds. This implies that salicylic acid could act at biosynthesis level but not for the accumulation of both hypericin and pseudohypericin. Consequently, the regulation of this process is more complex than cited in the literature involving the responsibility of only Hyp-1 gene, encoding a hypericin biosynthetic enzyme, cloned and characterized from H. perforatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BA:

Benzyladenine

CHI:

Chalcone isomerase

2,4-D:

2,4-Dichlorophenoxyacetic acid

HPLC:

High-performance liquid chromatography

JA:

Jasmonic acid

NAA:

α-Naphtaleneacetic acid

PAL:

Phenylalanine ammonia lyase

pKS:

Polyketide synthase

SA:

Salicylic acid

References

  • Agostinis P, Vantieghem A, Merlevede W, de Witte PAM (2002) Hypericin in cancer treatment: more light on the way. Int J Biochem Cell Biol 34:221–241

    Article  PubMed  CAS  Google Scholar 

  • Axarlis S, Mentis A, Demetzos C, Mitaku S, Skaltsounis AL, Marselos M, Malamas M (1998) Antiviral in vitro activity of Hypericum perforatum L. extract on the human cytomegalovirus (HCMV). Phytother Res 12:507–511

    Article  Google Scholar 

  • Bais HP, Vepachedu R, Lawrence CB, Stermitz FR, Vivanco JM (2003) Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s wort (Hypericum perforatum L.). J Biol Chem 34:32413–32422

    Article  Google Scholar 

  • Barber MS, McConnell VS, DeCaux BS (2000) Antimicrobial intermediates of the general phenylpropanoid and lignin specific pathways. Phytochemistry 54:53–56

    Article  PubMed  CAS  Google Scholar 

  • Bonora A, Mares D (1982) A simple colorimetric method for detecting cell viability in cultures of eukaryotic microorganisms. Curr Microbiol 7:217–221

    Article  Google Scholar 

  • Briskin DP, Gawienowski MC (2001) Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum. Plant Physiol Biochem 39:1075–1081

    Article  CAS  Google Scholar 

  • Bruni R, Sacchetti G (2009) Factors affecting polyphenol biosynthesis in wild and field grown St. John’s Wort (Hypericum perforatum L. Hypericaceae/Guttiferae). Molecules 14:682–725

    Article  PubMed  CAS  Google Scholar 

  • Büter B, Orlacchio C, Berger K (1998) Significance of genetic and environmental aspects in the field cultivation of Hypericum perforatum. Planta Med 64:431–437

    Article  PubMed  Google Scholar 

  • Campos AD, Ferreira AG, Vozári Hampe MM, Ferreira Antunes I, Brancão N, Silveira EP, da Silva JB, Osório VA (2003) Induction of chalcone synthase and phenylalanine ammonia-lyase by salicylic acid and Colletotrichum lindemuthianum in common bean. Brazil J Plant Physiol 15:129–134

    CAS  Google Scholar 

  • Causevic A, Delaunay A, Ounnar S, Righezza M, Delmotte F, Brignolas F, Hagège D, Maury S (2005) DNA methylating and demethylating treatments modify phenotype and cell wall differentiation state in sugarbeet cell lines. Plant Physiol Biochem 43:681–691

    Article  PubMed  CAS  Google Scholar 

  • Conceição LFR, Ferreres F, Tavares RM, Dias ACP (2006) Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochemistry 67:149–155

    Article  PubMed  Google Scholar 

  • Conrath U, Chen Z, Ricigliano JR, Klessig DF (1995) Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proc Natl Acad Sci USA 92:7143–7147

    Article  PubMed  CAS  Google Scholar 

  • Coste A, Vlase L, Halmagyi A, Deliu C, Coldea G (2011) Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tiss Organ Cult 106:279–288

    Article  CAS  Google Scholar 

  • Danova K, Čellárová E, Macková A, Daxnerová Z, Kapchina-Toteva V (2010) In vitro culture of Hypericum rumeliacum Boiss. and production of phenolics and flavonoids. In vitro Cell Dev Biol Plant 46:422–429

    Article  CAS  Google Scholar 

  • Danova K, Nikolova-Damianova B, Denev R, Dimitrov D (2012) Influence of vitamins on polyphenolic content, morphological development, and stress response in shoot cultures of Hypericum spp. Plant Cell Tiss Organ Cult. doi:10.1007/s11240-012-0159-0

    Google Scholar 

  • Di Carlo G, Borrelli F, Emst E, Izzo AA (2001) St John’s wort: prozac from the plant kingdom. Trends Pharmacol Sci 22:292–297

    Article  PubMed  Google Scholar 

  • Dias ACP, Tomás-Barberán FA, Fernandes-Ferreira M, Ferreres F (1998) Unusual flavonoids produced by callus of Hypericum perforatum. Phytochemistry 48:1165–1168

    Article  CAS  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    PubMed  CAS  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang L (2002) The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol 3:371–390

    Article  PubMed  CAS  Google Scholar 

  • Falk H (1999) From the photosensitizer hypericin to the photoreceptor stentorin—the chemistry of phenanthroperylene quinones. Angew Chem Int Ed 38:3116–3136

    Article  Google Scholar 

  • Fields PG, Amason JT, Fulcher RG (1990) The spectral properties of Hypericum perforatum leaves: the implications for its photoactivated defences. Revue Can Bot 68:1166–1170

    Article  Google Scholar 

  • Filippini R, Piovan A, Borsarini A, Caniato R (2010) Study of dynamic accumulation of secondary metabolites in three subspecies of Hypericum perforatum. Fitoterapia 81:115–119

    Article  PubMed  CAS  Google Scholar 

  • Gadzovska S, Maury S, Ounnar S, Righezza M, Kascakova S, Refregiers M, Spasenoski M, Joseph C, Hagège D (2005) Identification and quantification of hypericin and pseudohypericin in different Hypericum perforatum L. in vitro cultures. Plant Physiol Biochem 43:591–601

    Article  PubMed  CAS  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Joseph C, Hagège D (2007) Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell Tiss Organ Cult 89:1–13

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Germ M, Stibilj V, Kreft S, Gaberščik A, Kreft I (2010) Flavonoid, tannin and hypericin concentrations in the leaves of St. John’s wort (Hypericum perforatum L.) are affected by UV-B radiation levels. Food Chem 122:471–474

    Article  CAS  Google Scholar 

  • Giusti MM, Rodríguez-Saona LE, Wrolstad RE (1999) Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins. J Agric Food Chem 47:4631–4637

    Article  PubMed  CAS  Google Scholar 

  • Godoy-Hernández G, Loyola-Vargas VM (1997) Effect of acetylsalicylic acid on secondary metabolism of Catharanthus roseus tumor suspension cultures. Plant Cell Rep 16:287–290

    Article  Google Scholar 

  • Greeson JM, Sanford B, Monti DA (2001) St. John’s wort (Hypericum perforatum): a review of the current pharmacological, toxicological, and clinical literature. Psychopharmacology 153:402–414

    Article  PubMed  CAS  Google Scholar 

  • Hahlbrock K, Bednarek P, Ciolkowski I, Hamberger B, Heise A, Liedgens H, Logemann E, Nürnberger T, Schmelzer E, Somssich IE, Tan J (2003) Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions. Proc Natl Acad Sci USA 100:14569–14576

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt R, Nicholson RL (1999) A survey of defense responses to pathogens. In: Agrawal AA et al (eds) Induced plant defenses against pathogens and herbivores: biochemistry, ecology and agriculture. The American Phytopathological Society Press, St. Paul Minesota, pp 55–71

    Google Scholar 

  • Hammerschmidt R, Smith-Becker JA (1999) The role of salicylic acid in disease resistance. In: Agrawal AA et al (eds) Induced plant defenses against pathogens and herbivores: biochemistry, ecology and agriculture. The American Phytopathological Society Press, St. Paul Minesota, pp 37–53

    Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    PubMed  CAS  Google Scholar 

  • Karakas O, Toker Z, Tilkat E, Ozen HC, Onay A (2009) Effects of different concentrations of benzylaminopurine on shoot regeneration and hypericin content in Hypericum triquetrifolium Turra. Nat Prod Res 23:1459–1465

    Article  PubMed  CAS  Google Scholar 

  • Karppinen K (2010) Biosynthesis of hypericins and hyperforins in Hypericum perforatum L. (St. John’s wort)—precursors and genes involved. Acta Universitatis Ouluensis, A Scientiae Rerum Naturalium 564, 74 p

  • Karppinen K, Hohtola A (2008) Molecular cloning and tissue-specific expression of two cDNAs encoding polyketide synthases from Hypericum perforatum. J Plant Physiol 165:1079–1086

    Article  PubMed  CAS  Google Scholar 

  • Karppinen K, György Z, Kauppinen M, Tolonen A, Jalonen J, Neubauer P, Hohtola A, Häggman H (2006) In vitro propagation of Hypericum perforatum L. and accumulation of hypericins, pseudohypericins and phloroglucinols. Propag Ornam Plants 6:170–179

    Google Scholar 

  • Karppinen K, Hokkanen J, Tolonen A, Mattila S, Hohtola A (2007) Biosynthesis of hyperforin and adhyperforin from amino acid precursors in shoot cultures of Hypericum perforatum. Phytochemistry 68:1038–1045

    Article  PubMed  CAS  Google Scholar 

  • Katz L, Donadio S (1993) Polyketide synthesis: prospects for hybrid antibiotics. Annu Rev Microbiol 47:875–912

    Article  PubMed  CAS  Google Scholar 

  • Kirakosyan A, Hayashi H, Inoue K, Charchoglyan A, Vardapetyan H (2000) Stimulation of the production of hypericins by mannan in Hypericum perforatum shoot cultures. Phytochemistry 53:345–348

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld A, Kaufman PB, Lu CR, Gibson DM, Bolling SF, Warber SL, Chang SC, Kirakosyan A (2007) The production of hypericins in two selected Hypericum perforatum shoot cultures is related to differences in black gland structure. Plant Physiol Biochem 45:24–32

    Article  PubMed  CAS  Google Scholar 

  • Košuth J, Katkovčinová Z, Olexová P, Čellárová E (2007) Expression of the hyp-1 gene in early stages of development of Hypericum perforatum L. Plant Cell Rep 26:211–217

    Article  PubMed  Google Scholar 

  • Latunde-Dada AO, Lucas JA (2001) The plant defence activator acibenzolar-S-methyl primes cowpea [Vigna unguiculata (L.) Walp.] seedlings for rapid induction of resistance. Physiol Mol Plant Pathol 58:199–208

    Article  CAS  Google Scholar 

  • Liu Q, Bonness MS, Liu M, Seradge E, Dixon RA, Mabry TJ (1995) Enzymes of B-ring-deoxy flavonoid biosynthesis in elicited cell cultures of “Old Man” cactus (Cephalocereus senilis). Arch Biochem Biophys 321:397–404

    Article  PubMed  CAS  Google Scholar 

  • Liu XN, Zhang XQ, Sun JS (2007a) Effects of cytokinins and elicitors on the production of hypericins and hyperforin metabolites in Hypericum sampsonii and Hypericum perforatum. Plant Growth Regul 53:207–214

    Article  CAS  Google Scholar 

  • Liu XN, Zhang XQ, Zhang SX, Sun JS (2007b) b) Regulation of metabolite production by precursors and elicitors in liquid cultures of Hypericum perforatum. Plant Cell Tiss Organ Cult 91:1–7

    Article  CAS  Google Scholar 

  • Markham KR (1989) Flavones, flavonols and their glycosides. In: Harborne JB (ed) Methods in plant biochemistry. Academic Press, London, pp 197–235

    Google Scholar 

  • Mehmetoglu U, Curtis WR (1997) Effects of abiotic inducers on sesquiterpene synthesis in hairy root and cell-suspension cultures of Hyoscyamus muticus. Appl Biochem Biotechnol 67:71–77

    Article  CAS  Google Scholar 

  • Michalska K, Fernandes H, Sikorski M, Jaskolski M (2010) Crystal structure of Hyp-1, a St. John’s wort protein implicated in the biosynthesis of hypericin. J Struct Biol 169:161–171

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Pasqua G, Avato P, Monacelli B, Santamaria AR, Argentieri MP (2003) Metabolites in cell suspension cultures, calli, and in vitro regenerated organs of Hypericum perforatum cv. Topas. Plant Science 165:977–982

    Article  CAS  Google Scholar 

  • Radauer C, Lackner P, Breiteneder H (2008) The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evol Biol 8:286–304

    Article  PubMed  Google Scholar 

  • Savio LEB, Astarita LV, Santarém ER (2012) Secondary metabolism in micropropagated Hypericum perforatum L. grown in non-aerated liquid medium. Plant Cell Tiss Organ Cult 108:465–472

    Article  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    Article  PubMed  CAS  Google Scholar 

  • Sirvent T, Gibson D (2002) Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors. Physiol Mol Plant Pathol 60:311–320

    CAS  Google Scholar 

  • Southwell IA, Bourke CA (2001) Seasonal variation in hypericin content of Hypericum perforatum L. (St. John’s Wort). Phytochemistry 56:437–441

    Article  PubMed  CAS  Google Scholar 

  • Sudha G, Ravishankar GA (2003) Putrescine facilitated enhancement of capsaicin production in cell suspension cultures of Capsicum frutescens. J Plant Physiol 160:339–346

    Article  PubMed  CAS  Google Scholar 

  • Taguchi G, Yazawa T, Hayashida N, Okazaki M (2001) Molecular cloning and heterologous expression of novel glucosyltransferases from tobacco cultured cells that have broad substrate specificity and are induced by salicylic acid and auxin. Eur J Biochem 268:4086–4094

    Article  PubMed  CAS  Google Scholar 

  • Tan J, Bednarek P, Liu J, Schneider B, Svatoš A, Hahlbrock K (2004) Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry 65:691–699

    Article  PubMed  CAS  Google Scholar 

  • Treutter D, Santos-Buelga C, Gutmann M, Kolodziej H (1994) Identification of flavan-3-ols and procyanidins by high-performance liquid chromatography and chemical reaction detection. J Chromatogr 667:290–297

    Article  CAS  Google Scholar 

  • Tsutsui T, Morita-Yamamuro C, Asada Y, Minami E, Shibuya N, Ikeda A, Yamaguchi J (2006) Salicylic acid and chitin elicitor both control expression of the CAD1 gene involved in the plant immunity of Arabidopsis. Biosci Biotechnol Biochem 70:2042–2048

    Article  PubMed  CAS  Google Scholar 

  • Vasconsuelo A, Boland R (2007) Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci 172:861–875

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Vivanco JM (2002) Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry 60:289–293

    Article  PubMed  CAS  Google Scholar 

  • Wang YD, Yuan YJ, Wu JC (2004) Induction studies of methyl jasmonate and salicylic acid on taxane production in suspension cultures of Taxus chinensis var. mairei. Biochem Eng J 19:259–265

    Article  Google Scholar 

  • Xu MJ, Dong JF, Zhang XB (2008) Signal interaction between nitric oxide and hydrogen peroxide in heat shock-induced hypericin production of Hypericum perforatum suspension cells. Sci Chin Ser C Life Sci 51:676–686

    Article  CAS  Google Scholar 

  • Zdunek K, Alfermann AW (1992) Initiation of shoot organ cultures of Hypericum perforatum and formation of hypericin derivates. Planta Med 58:621–622

    Article  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  PubMed  CAS  Google Scholar 

  • Zobayed SMA, Afreen F, Goto E, Kozai T (2006) Plant-environment interactions: accumulation of hypericin in dark glands of Hypericum perforatum. Ann Bot 98:793–804

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministère des Affaires Etrangères – France (Programme COCOP: Réseau d’Enseignement regional Postgraduate en Biologie, grant no. DSUR-NGE-4B1-505). We are very grateful to Professor C. Jay-Allemand from University of Montpellier (France) for helpful advice for secondary metabolites analyses. We thank Dr Jan Kosuth and Eva Cellarova from University in Kosice (Slovakia) for their help in the RTPCR analyses. We acknowledge to Professor F. Brignolas for his help in statistical analyses and Mrs Alison Price for carefully reading of the manuscript. We thank Dr S. Ounnar and G. Moreau for their technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Hagège.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadzovska, S., Maury, S., Delaunay, A. et al. The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L.. Plant Cell Tiss Organ Cult 113, 25–39 (2013). https://doi.org/10.1007/s11240-012-0248-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0248-0

Keywords

Navigation