Skip to main content
Log in

Effect of sucrose on shoot regeneration in Agrobacterium transformed Hypericum perforatum L. roots

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 2016

Abstract

The aim of the present study was to investigate the effect of sucrose on shoot regeneration potential in Hypericum perforatum L. roots obtained by Agrobacterium rhizogenes transformation. The morphological evaluation of transgenic roots grown on media supplemented with sucrose (0.5, 1, 2, 4, 6 and 8 %) indicated that both genotype and sucrose concentration significantly affected root elongation and branching, as well as shoot regeneration. For two of five analyzed clones, lower sucrose concentrations (up to 2 %) led to intensive shoot regeneration, while the other three clones intensified shoot development only at elevated sucrose concentrations (4 %). For all clones, concentrations above 4 % had a deleterious effect on both root and shoot development. Genetic characterization of regenerated shoots revealed that all tested clones were diploid with an average of 0.670 ± 0.002 pg of DNA per nucleus, with no significant differences between transgenic and non-transformed plants and, according to PCR, with integrated A. rhizogenes rolA, -B, -C and -D genes. Real-time RT-PCR confirmed the expression of rolA, -B and -C, while expression of the rolD gene was not detected. Differences were detected in the absolute amounts of transcripts between analyzed clones, with the highest levels of expression for all three analyzed rol genes in a clone previously defined as having high root differentiation and less effective shoot regeneration potential. The observed variations in morphogenesis potential could be attributed to different levels of expression of integrated rolA, -B and -C genes; while sucrose additionally pointed out these trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alpizar E, Dechamp E, Lapeyre-Montes F, Guilhaumon C, Bertrand B, Jourdan C, Lashermes P, Etienne H (2008) Agrobacterium rhizogenes-transformed roots of coffee (Coffea arabica): conditions for long-term proliferation, and morphological and molecular characterization. Ann Bot 101:929–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Beerhues L (2006) Hyperforin. Phytochemistry 67:2201–2207

    Article  CAS  PubMed  Google Scholar 

  • Beltrán J, Jaimes H, Echeverry M, Ladino Y, López D, Duque MC, Chavarriaga P, Tohme J (2009) Quantitative analysis of transgenes in cassava plants using real-time PCR technology. In Vitro Cell Dev Biol Plant 45:48–56

    Article  Google Scholar 

  • Bertoli A, Giovannini A, Ruffoni B, Di Guardo A, Spinelli G, Mazzetti M, Pistelli L (2008) Bioactive constituent production in St. John’s wort in vitro hairy roots. Regenerated plant lines. J Agric Food Chem 56:5078–5082

    Article  CAS  PubMed  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    Article  CAS  Google Scholar 

  • Büter B, Orlacchio C, Soldati A, Berger K (1998) Significance of genetic and environmental aspects in the field cultivation of Hypericum perforatum. Planta Med 64:431–437

    Article  PubMed  Google Scholar 

  • Butterweck V (2003) Mechanism of action of St John’s wort in depression: what is known? CNS Drugs 17:539–562

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2006) Spontaneous plant regeneration in transformed roots and calli from Tylophora indica: changes in morphological phenotype and tylophorine accumulation associated with transformation by Agrobacterium rhizogenes. Plant Cell Rep 25:1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Chriqui D, Guivarc’h A, Dewitte W, Prinsen E, van Onkelen H (1996) Rol genes and root initiation and development. Plant Soil 187:47–55

    Article  CAS  Google Scholar 

  • Ciccarelli D, Andreucci AC, Pagni AM (2001) Translucent glands and secretory canals in Hypericum perforatum L. (Hypericaceae): morphological, anatomical and histochemical studies during the course of ontogenesis. Ann Bot 88:637–644

    Article  Google Scholar 

  • Çirak C, Radusiene J, Ivanauskas L, Jakstas V, Çamaş N (2014) Phenological changes in the chemical content of wild and greenhouse-grown Hypericum pruinatum: flavonoids. Turk J Agric For 38:362–370

    Article  Google Scholar 

  • Cui X-H, Chakrabarty D, Lee E-J, Paek K-Y (2010) Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in bioreactor. Bioresource Technol 101:4708–4716

    Article  CAS  Google Scholar 

  • De Veylder L, De Almeida-Engler J, Burssens S, Manevski A, Lescure B, Van Montagu M, Engler G, Inzé D (1999) A new D-type cyclin of Arabidopsis thaliana expressed during lateral root primordia formation. Planta 208:453–462

    Article  PubMed  Google Scholar 

  • Di Guardo A, Čellárová E, Koperdáková J, Pistelli L, Ruffoni B, Allavena A, Giovannini A (2003) Hairy root induction and plant regeneration in Hypericum perforatum L. J Genet Breed 57:269–278

    Google Scholar 

  • Doležel J (1991) Flow cytometric analysis of nuclear DNA content in higher plants. Phytochem analysis 2:143–154

    Article  Google Scholar 

  • Fiebich BL, Knörle R, Appel K, Kammler T, Weiss G (2011) Pharmacological studies in an herbal drug combination of St. John’s Wort (Hypericum perforatum) and passion flower (Passiflora incarnata): in vitro and in vivo evidence of synergy between Hypericum and Passiflora in antidepressant pharmacological models. Fitoterapia 82:474–480

    Article  CAS  PubMed  Google Scholar 

  • Francis D, Halford NG (2006) Nutrient sensing in plant meristems. Plant Mol Biol 60:981–993

    Article  CAS  PubMed  Google Scholar 

  • Gangopadhyay M, Chakraborty D, Bhattacharyya S, Bhattacharya S (2010) Regeneration of transformed plants from hairy roots of Plumbago indica. Plant Cell Tiss Organ Cult 102:109–114

    Article  Google Scholar 

  • Gasic K, Hernandez A, Korban SS (2004) RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Rep 22:437a–437g

    Article  Google Scholar 

  • Gaudin V, Lunness PA, Fobert PR, Towers M, Riou-Khamlichi C, Murray JA, Coen E, Doonan JH (2000) The expression of D-cyclin genes defines distinct developmental zones in snapdragon apical meristems and is locally regulated by the Cycloidea gene. Plant Physiol 122:1137–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson IS (2000) Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol 124:1532–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson J, Smeekens S (2009) Sugar perception and signaling—an update. Curr Opin Plant Biol 12:562–567

    Article  CAS  PubMed  Google Scholar 

  • Hartig K, Beck E (2006) Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle. Plant Biol 8:389–396

    Article  CAS  PubMed  Google Scholar 

  • He M, Wang Y, Hua W, Zhang Y, Wang Z (2012) De novo sequencing of Hypericum perforatum transcriptome to identify potential genes involved in the biosynthesis of active metabolites. PLoS One 7(7):e42081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilyas S, Naz S, Javad S, Shehzadi K, Tariq A, Munir N, Ali A (2013) Influence of cytokinins, sucrose and pH on adventitious shoot regeneration of Polyscias balfouriana (Balfour aralia). Global J Med Plant Res 1:31–37

    Google Scholar 

  • Jouanin L, Vilaine F, Tourneur C, Pautot V, Muller JF, Caboche M (1987) Transfer of a 4.3-kb fragment of the TL-DNA of Agrobacterium rhizogenes strain A4 confers the pRi transformed phenotype to regenerated tobacco plants. Plant Sci 53:53–63

    Article  CAS  Google Scholar 

  • Karppinen K, Hohtola A (2008) Molecular cloning and tissue-specific expression of two cDNAs encoding polyketide synthases from Hypericum perforatum. J Plant Physiol 165:1079–1086

    Article  CAS  PubMed  Google Scholar 

  • Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plants Res 3:1222–1239

    CAS  Google Scholar 

  • Komarovská H, Košuth J, Giovannini A, Smelcerovic A, Zuehlke S, Čellárová E (2010) Effect of number of rol genes integrations on phenotypic variation in hairy root-derived Hypericum perforatum L. plants. Z Naturforsch 65c:701–712

    Google Scholar 

  • Kooter JM, Matzke MA, Meyer P (1999) Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci 4:340–347

    Article  PubMed  Google Scholar 

  • Koperdáková J, Komarovská H, Košuth J, Giovannini A, Čellárová E (2009) Characterization of hairy root-phenotype in transgenic Hypericum perforatum L. clones. Acta Physiol Plant 31:351–358

    Article  Google Scholar 

  • Koperdáková J, Komarovská H, Košuth J, Čellárová E (2011) Transgenosis in the genus Hypericum: transgenic St. John’s wort plants. Medicinal Aromatic Plant Sci Biotech 5:53–61

    Google Scholar 

  • Kubin A, Wierrani F, Burner U, Alth G, Grünberger W (2005) Hypericin—the facts about a controversial agent. Curr Pharm Des 11:233–253

    Article  CAS  PubMed  Google Scholar 

  • Kwon HK, Wang MH (2011) The D-type cyclin gene (Nicta;-CycD3;4) controls cell cycle progression in response to sugar availability in tobacco. J Plant Physiol 168:133–139

    Article  CAS  PubMed  Google Scholar 

  • Lazzeri PA, Hildebrand DF, Sunega J, Williams EG, Collins GB (1988) Soybean somatic embryogenesis: interactions between sucrose and auxin. Plant Cell Rep 7:517–520

    Article  CAS  PubMed  Google Scholar 

  • Lloyd G, McCown B (1981) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia by use of shoot tip culture. Proc Int Plant Propag Soc 30:421–427

    Google Scholar 

  • Lourenço PML, de Castro S, Martins TM, Clemente A, Domingos A (2002) Growth and proteolytic activity of hairy roots from Centaurea calcitrapa: effect of nitrogen and sucrose. Enzyme Microb Tech 31:242–249

    Article  Google Scholar 

  • Majumdar S, Garai S, Jha S (2011) Genetic transformation of Bacopa monnieri by wild type strains of Agrobacterium rhizogenes stimulates production of bacopa saponins in transformed calli and plants. Plant Cell Rep 30:941–954

    Article  CAS  PubMed  Google Scholar 

  • McCoy JA, Camper ND (2002) Development of a micropropagation protocol for St. John’s Wort (Hypericum perforatum L.). Hort Sci 37:978–980

    CAS  Google Scholar 

  • Mitić N, Dmitrović S, Djordjević M, Zdravković-Korać S, Nikolić R, Raspor M, Djordjević T, Maksimović V, Živković S, Krstić-Milošević D, Stanišić M, Ninković S (2012) Use of Chenopodium murale L. transgenic hairy root in vitro culture system as a new tool for allelopathic assays. J Plant Physiol 169:1203–1211

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nathan PJ (2001) Hypericum perforatum (St John’s Wort): a non-selective reuptake inhibitor? A review of the recent advances in its pharmacology. J Psychopharmacol 15:47–54

    Article  CAS  PubMed  Google Scholar 

  • Nillson O, Little CHA, Sandberg G, Ollson O (1996) Expression of two heterologous promoters, Agrobacterium rhizogenes rolC and cauliflower mosaic virus 35S, in the stem of transgenic hybrid aspen plants during the annual cycle of growth and dormancy. Plant Mol Biol 31:887–895

    Article  Google Scholar 

  • Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100:463–473

    Article  CAS  Google Scholar 

  • Ochatt S, Jacas L, Patat-Ochatt EM, Djenanne S (2013) Flow cytometric analysis and molecular characterization of Agrobacterium tumefaciens-mediated transformants of Medicago truncatula. Plant Cell Tiss Organ Cult 113:237–244

    Article  CAS  Google Scholar 

  • Pavlović S, Vinterhalter B, Mitić N, Adžić S, Pavlović N, Zdravković M, Vinterhalter D (2010) In vitro shoot regeneration from seedling explants in Brassica vegetables: red cabbage, broccoli, Savoy cabbage and cauliflower. Arch Biol Sci 62:337–345

    Article  Google Scholar 

  • Rathore S, Narender S, Singh SK (2013) Role of sucrose and season on rapid in vitro regeneration for two Stevia genotypes. GJBB 2:150–153

    Google Scholar 

  • Riou-Khamlichi C, Menges M, Healy JM, Murray JA (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol Cell Biol 20:4513–4521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa YBCJ, Aizza LCB, Armanhi JSL, Dornelas MC (2013) A Passiflora homolog of a D-type cyclin gene is differentially expressed in response to sucrose, auxin, and cytokinin. Plant Cell Tiss Organ Cult 115:233–242

    Article  CAS  Google Scholar 

  • Roychowdhury D, Majumder A, Jha S (2013) Agrobacterium rhizogenes-mediated transformation in medicinal plants: prospects and challenges. In: Chandra S, Lata H, Varma A (eds) Biotechnology for medicinal plants: Micropropagation and improvement. Springer-Verlag, Berlin Heidelberg, pp 29–68

    Chapter  Google Scholar 

  • Silva BA, Ferreres F, Malva JO, Dias ACP (2005) Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chem 90:157–167

    Article  CAS  Google Scholar 

  • Skylar A, Sung F, Hong F, Chory J, Wu X (2011) Metabolic sugar signal promotes Arabidopsis meristematic proliferation via G2. Dev Biol 351:82–89

    Article  CAS  PubMed  Google Scholar 

  • Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid: identification of open reading frames. J Biol Chem 261:108–121

    CAS  PubMed  Google Scholar 

  • Southwell IA, Campbell MH (1991) Hypericin content variations in Hypericum perforatum in Australia. Phytochem 30:475–478

    Article  CAS  Google Scholar 

  • Tepfer M, Casse-Delbart F (1987) Agrobacterium rhizogenes as a vector for transforming higher plants. Microbiol Sci 4:24–28

    CAS  PubMed  Google Scholar 

  • Vaucheret H, Fagard M (2001) Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet 17:29–35

    Article  CAS  PubMed  Google Scholar 

  • Vinterhalter B, Ninković S, Cingel A, Vinterhalter D (2006) Shoot and root culture of Hypericum perforatum L. transformed with Agrobacterium rhizogenes A4M70GUS. Biol Plant 50:767–770

    Article  Google Scholar 

  • Wu X, Dabi T, Weigel D (2005) Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Curr Biol 15:436–440

    Article  CAS  PubMed  Google Scholar 

  • Wu SQ, Yu XK, Lian ML, Park SY, Piao XC (2014) Several factors affecting hypericin production of Hypericum perforatum during adventitious root culture in airlift bioreactors. Acta Physiol Plant 36:975–981

    Article  CAS  Google Scholar 

  • Yokoyama R, Hirose T, Fujti N, Aspuria ET, Kato A, Uchimiya H (1994) The rolC promoter of Agrobacterium rhizogenes Ri plasmid is activated by sucrose in transgenic tobacco plants. Mol Gen Genet 244:15–22

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Kwok KH, Doran PM (1996) Effect of sucrose, exogenous product concentration, and other culture conditions on growth and steroidal alkaloid production by Solanum aviculare hairy roots. Enzyme Microb Tech 18:238–243

    Article  CAS  Google Scholar 

  • Zhou LG, Wu JY (2006) Development and application of medicinal plant tissue cultures for production of drugs and herbal medicinals in China. Nat Prod Rep 23:789–810

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Cao G, Lin R, Sun Y, Li W (1994) A rapid and efficient DNA extraction method of genus Fagopyrum for RAPD analysis. In: Javornik B, Bohanec B, Kreft I (eds) Proceedings of impact of plant biotechnology on agriculture. Biotechnical Faculty, Ljubljana, pp 171–175

  • Zobayed SMA, Afreen F, Goto E, Kozai T (2006) Plant-environment interactions: accumulation of hypericins in dark glands of Hypericum perforatum. Ann Bot (Lond) 98:793–804

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by Ministry of Education, Science and Technological Development of Serbia (Project ON173015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Savić.

Additional information

Communicated by M. Lambardi.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11738-016-2264-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinterhalter, B., Zdravković-Korać, S., Mitić, N. et al. Effect of sucrose on shoot regeneration in Agrobacterium transformed Hypericum perforatum L. roots. Acta Physiol Plant 37, 37 (2015). https://doi.org/10.1007/s11738-015-1785-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1785-z

Keywords

Navigation