Skip to main content
Log in

Agrobacterium enhances xanthone production in Hypericum perforatum cell suspensions

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Hypericum perforatum L. cell suspensions were evaluated for their growth, antioxidant activity, phenolic compound productions and xanthone profile after elicitation with Agrobacterium tumefaciens and Agrobacterium rhizogenes. Secondary metabolite production in H. perforatum elicited cells was enhanced without loss of biomass. A. tumefaciens elicited cells showed largely increased amounts of total phenolics and flavonoids, whereas total flavanol contents were slightly enhanced. The production of phenolic compounds was clearly less marked in A. rhizogenes treated cells. Antioxidant activity of elicited cells was remarkably elevated throughout the post-elicitation period. A significant correlation between antioxidant activity and phenolic production in elicited cells was found. Xanthone profile of H. perforatum cells was notably changed after bacterial elicitation. H. perforatum elicited cells yielded about 17-fold higher levels of xanthones compared to control cells. Among the twenty-one detected xanthones, five of them identified as 1,3,5,6-tetrahydroxyxanthone C-prenyl isomer, toxyloxanthone, 1,3,7-trihydroxy-6-methoxy-8-prenyl xanthone, 1,3,6-trihydroxy-7-methoxy-8-prenyl xanthone and 1,3,6,7-tetrahydroxyxanthone 2-prenyl xanthone were de novo synthesized in elicited cells. Altogether, these results indicated that H. perforatum cells elicited with Agrobacterium represent promising experimental system for enhanced production of xanthones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CE:

Catechin equivalents

DAD:

Diode-array detection

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

DW:

Dry weight

ESI:

Electrospray ionization

GAE:

Gallic acid equivalents

HPLC:

High-performance liquid chromatography

MS:

Mass spectrometry

TP:

Total phenolics

TF:

Total flavonoids

TFL:

Total flavanols

2,4-D:

2,4-Dichlorophenoxyacetic acid

BA:

N 6-benzyladenine

References

  • Bergonzi MC, Bilia AR, Gallori S, Guerrini D, Vincieri FF (2001) Variability in the content of the constituents of Hypericum perforatum L. and some commercial extracts. Drug Dev Ind Pharm 27:491–497

    Article  CAS  PubMed  Google Scholar 

  • Bombardelli E, Morazzoni P (1995) Hypericum perforatum. Fitoterapia 66:43–68

    CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  • Breyer A, Elstner M, Gillessen T, Weiser D, Elstner E (2007) Glutamate-induced cell death in neuronal HT22 cells is attenuated by extracts from St. John’s wort (Hypericum perforatum L.). Phytomedicine 14:250–255

    Article  CAS  PubMed  Google Scholar 

  • Chodisetti B, Rao K, Gandi S, Giri A (2013) Improved gymnemic acid production in the suspension cultures of Gymnema sylvestre through biotic elicitation. Plant Biotechnol Rep 7:519–525

    Article  Google Scholar 

  • Conceição LFR, Ferreres F, Tavares RM, Dias ACP (2006) Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochemistry 67:149–155

    Article  PubMed  Google Scholar 

  • Cui XH, Murthy HN, Wu CH, Paek KY (2010) Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell Tiss Org 103:7–14

    Article  CAS  Google Scholar 

  • Cuyckens F, Rozenberg R, Hoffmann E, Claeys M (2001) Structure characterization of flavonoid O-diglycosides by positive and negative nano-electrospray ionization ion trap mas spectrometry. J Mass Spectrom 36:1203–1210

    Article  CAS  PubMed  Google Scholar 

  • Danova K, Čellárová E, Macková A, Daxnerová Z, Kapchina-Toteva V (2010) In vitro culture of Hypericum rumeliacum Boiss. and production of phenolics and flavonoids. In Vitro Cell Dev Biol Plant 46:422–429

    Article  CAS  Google Scholar 

  • Dias ACP, Seabra RM, Andrade PB, Ferreres F, Fernandes-Ferreira M (2000) Xanthone biosynthesis and accumulation in calli and suspended cells of Hypericum androsaemum. Plant Sci 150:93–101

    Article  CAS  Google Scholar 

  • Dias ACP, Seabra RM, Andrade PB, Ferreres F, Ferreira MF (2001) Xanthone production in calli and suspended cells of Hypericum perforatum. J Plant Physiol 158:821–827

    Article  CAS  Google Scholar 

  • Erbs G, Silipo A, Aslam S, De Castro C, Liparoti V, Flagiello A, Pucci P, Lanzetta R, Parrilli M, Molinaro A, Newman M-A, Cooper RM (2008) Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity. Chem Biol 15:438–448

    Article  CAS  PubMed  Google Scholar 

  • Fotie J, Bohle DS (2006) Pharmacological and biological activities of xanthones. Anti Infect Agents Med Chem 5:15–31

    Article  CAS  Google Scholar 

  • Franklin G, Conceição LFR, Kombrink E, Dias ACP (2008) Hypericum perforatum plant cells reduce Agrobacterium viability during co-cultivation. Planta 227:1401–1408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Franklin G, Conceição LFR, Kombrink E, Dias ACP (2009) Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry 70:60–68

    Article  CAS  PubMed  Google Scholar 

  • Gadzovska S, Maury S, Ounnar S, Righezza M, Kascakova S, Refregiers M, Spasenoski M, Joseph C, Hagège D (2005) Identification and quantification of hypericin and pseudohypericin in different Hypericum perforatum L. in vitro cultures. Plant Physiol Biochem 43:591–601

    Article  CAS  PubMed  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Joseph C, Hagege D (2007) Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell Tiss Org 89:1–13

    Article  CAS  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Hagège D, Courtois D, Joseph C (2013) The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell Tiss Org 113:25–39

    Article  CAS  Google Scholar 

  • Gadzovska-Simic S, Tusevski O, Antevski S, Atanasova-Pancevska N, Petreska J, Stefova M, Kungulovski D, Spasenoski M (2012) Secondary metabolite production in Hypericum perforatum L. cell suspensions upon elicitation with fungal mycelia from Aspergillus flavus. Arch Biol Sci 64:113–121

    Article  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures soybean root cells. Exp Cell Res 50:148–151

    Article  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishiguro K, Fukumoto H, Nakajima M, Isoi K (1993) Xanthones in cell suspension cultures of Hypericum paturum. Phytochemistry 33:839–840

    Article  CAS  Google Scholar 

  • Ishiguro K, Nakajima M, Fukumoto H, Isoi K (1995) Co-occurence of prenylated xanthones and their cyclization products in cell suspension cultures of Hypericum patulum. Phytochemistry 38:867–869

    Article  CAS  Google Scholar 

  • Jung HY, Kang SM, Kang YM, Kang MJ, Yun DJ, Bahk JD, Yang JK, Choi MS (2003) Enhanced production of scopolamine by bacterial elicitors in adventitious hairy root cultures of Scopolia parviflora. Enzyme Microb Technol 33:987–990

    Article  CAS  Google Scholar 

  • Jürgenliemk G, Nahrstedt A (2002) Phenolic compounds from Hypericum perforatum. Planta Med 68:88–91

    Article  PubMed  Google Scholar 

  • Kirakosyan A, Hayashi H, Inoue K, Charchoglyan A, Vardapetyan H (2000) Stimulation of the production of hypericins by mannan in Hypericum perforatum shoot cultures. Phytochemistry 53:345–348

    Article  CAS  PubMed  Google Scholar 

  • Kirakosyan A, Sirvent TM, Gibson DM, Kaufman PB (2004) The production of hypericins and hyperforin by in vitro cultures of St. John’s wort (Hypericum perforatum). Biotechnol Appl Biochem 39:71–81

    Article  CAS  PubMed  Google Scholar 

  • Košuth J, Koperdáková J, Tolonen A, Hohtola A, Čellárová E (2003) The content of hypericins and phloroglucinols in Hypericum perforatum L. seedlings at early stage of development. Plant Sci 165:515–521

    Article  Google Scholar 

  • Krolicka A, Szpitter A, Gilgenast E, Romanik G, Kaminski M, Lojkowska E (2008) Stimulation of antibacterial naphthoquinones and flavonoids accumulation in carnivorous plants grown in vitro by addition of elicitors. Enzyme Microb Technol 42:216–221

    Article  CAS  Google Scholar 

  • Li YG, Tanner G, Larkin P (1996) The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J Sci Food Agric 70:89–101

    Article  CAS  Google Scholar 

  • Lim FL, Yam MF, Asmawi MZ, Chan LK (2013) Elicitation of Orthosiphon stamineus cell suspension culture for enhancement of phenolic compounds biosynthesis and antioxidant activity. Ind Crops Prod 50:436–442

    Article  CAS  Google Scholar 

  • Liu FF, Ang CY, Springer D (2000) Optimization of extraction conditions for active components in Hypericum perforatum using response surface methodology. J Agric Food Chem 48:3364–3371

    Article  CAS  PubMed  Google Scholar 

  • Makris DP, Boskou G, Andrikopoulos NK (2007) Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J Food Comp Anal 20:125–132

    Article  CAS  Google Scholar 

  • Meruelo D, Lavie G, Lavie D (1988) Therapeutic agents with dramatic antiretroviral activity and little toxicity at effective doses: aromatic polycyclic diones hypericin and pseudohypericin. Proc Natl Acad Sci 85:5230–5234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Phys Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (2006) St. John’s wort (Hypericum perforatum L.): challenges and strategies for production of chemically consistent plants. Can J Plant Sci 86:765–771

    Article  CAS  Google Scholar 

  • Nahrstedt A, Butterweck V (2010) Lessons learned from herbal medicinal products: the example of St. John’s wort. J Nat Prod 73:1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79

    CAS  Google Scholar 

  • Park SY, Lee WY, Park Y, Ahn JK (2006) Effects of nitrogen source and bacterial elicitor on isoflavone accumulation in root cultures of Albizzia kalkora (Roxb.) Prain. J Integr Plant Biol 48:1108–1114

    Article  CAS  Google Scholar 

  • Pasqua G, Avato P, Monacelli B, Santamaria AR, Argentieri MP (2003) Metabolites in cell suspension cultures, calli, and in vitro regenerated organs of Hypericum perforatum cv. Topas. Plant Sci 165:977–982

    Article  CAS  Google Scholar 

  • Pavlík M, Vacek J, Klejdus B, Kuban V (2007) Hypericin and hyperforin production in St. John’s wort in vitro culture: influence of saccharose, polyethylene glycol, methyl jasmonate, and Agrobacterium tumefaciens. J Agric Food Chem 55:6147–6153

    Article  PubMed  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  PubMed  Google Scholar 

  • Rath G, Potterat O, Mavi S, Hostettmann K (1996) Xanthones from Hypericum roeperanum. Phytochemistry 43:513–520

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Rocha L, Marston A, Auxiliadora M, Kaplan C, Stoeckli-Evans H, Thull U, Testa B, Hostettmann K (1994) An antifungal γ-pyrone and xanthones with monoamine oxidase inhibitory activity from Hypericum brasiliense. Phytochemistry 36:1381–1385

    Article  CAS  PubMed  Google Scholar 

  • Santarem ER, Zamban DC, Felix LM, Astarita LV (2008) Secondary metabolism of Hypericum perforatum induced by Agrobacterium rhizogenes. In vitro Cell Dev Biol Anim 44:S52–S80

    Article  Google Scholar 

  • Sato F, Hashimoto T, Hachiya A, Tamura K, Choi K-B, Morishige T, Fujimoto H, Yamada Y (2001) Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci 98:367–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Savitha BC, Thimmaraju R, Bhagyalakshmi N, Ravishankar GA (2006) Different biotic and abiotic elicitors influence betalain production in hairy root cultures of Beta vulgaris in shake-flask and bioreactor. Process Biochem 41:50–60

    Article  CAS  Google Scholar 

  • Silva BA, Ferreres F, Malva JO, Dias ACP (2005) Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chem 90:157–167

    Article  CAS  Google Scholar 

  • Silva BA, Malva JO, Dias ACP (2008) St. John’s Wort (Hypericum perforatum) extracts and isolated phenolic compounds are effective antioxidants in several in vitro models of oxidative stress. Food Chem 110:611–619

    Article  CAS  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Sirvent T, Gibson D (2002) Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors. Physiol Mol Plant Pathol 60:311–332

    Article  CAS  Google Scholar 

  • Sivakumar G, Paek KY (2005) Methyl jasmonate induce enhanced production of soluble biophenols in Panax ginseng adventitious roots from commercial scale bioreactors. Chem Nat Compd 41:669–673

    Article  CAS  Google Scholar 

  • Tanaka N, Takaishi Y (2006) Xanthones from Hypericum chinense. Phytochemistry 67:2146–2151

    Article  CAS  PubMed  Google Scholar 

  • Tocci N, Ferrari F, Santamaria AR, Valletta A, Rovardi I, Pasqua G (2010) Chitosan enhances xanthone production in Hypericum perforatum subsp. angustifolium cell cultures. Nat Prod Res 24:286–293

    Article  CAS  PubMed  Google Scholar 

  • Tocci N, Simonetti G, D’Auria FD, Panella S, Palamara AT, Valletta A, Pasqua A (2011) Root cultures of Hypericum perforatum subsp. angustifolium elicited with chitosan and production of xanthone-rich extracts with antifungal activity. Appl Microbiol Biotechnol 91:977–987

    Article  CAS  PubMed  Google Scholar 

  • Tusevski O, Petreska Stanoeva J, Stefova M, Kungulovski D, Atanasova Pancevska N, Sekulovski N, Panov S, Gadzovska Simic S (2013) Hairy roots of Hypericum perforatum L.: a promising system for xanthone production. Cent Eur J Biol 8:1010–1022

    Article  CAS  Google Scholar 

  • Udomsuk L, Jarukamjorn K, Tanaka H, Putalun W (2011) Improved isoflavonoid production in Pueraria candollei hairy root cultures using elicitation. Biotechnol Lett 33:369–374

    Article  CAS  PubMed  Google Scholar 

  • Walker TS, Pal Bais H, Vivanco JM (2002) Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry 60:289–293

    Article  CAS  PubMed  Google Scholar 

  • Wilczańska-Barska A, Królicka A, Głód D, Majdan M, Kawiak A, Krauze-Baranowska M (2012) Enhanced accumulation of secondary metabolites in hairy root cultures of Scutellaria lateriflora following elicitation. Biotechnol Lett 34:1757–1763

    Article  PubMed  Google Scholar 

  • Young JM, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103

    Article  CAS  PubMed  Google Scholar 

  • Zobayed S, Saxena PK (2004) Production of St. John’s Wort plants under controlled environment for maximizing biomass and secondary metabolites. In Vitro Cell Dev Biol Plant 40:108–114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Gadzovska Simic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tusevski, O., Petreska Stanoeva, J., Stefova, M. et al. Agrobacterium enhances xanthone production in Hypericum perforatum cell suspensions. Plant Growth Regul 76, 199–210 (2015). https://doi.org/10.1007/s10725-014-9989-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9989-6

Keywords

Navigation