Skip to main content
Log in

Effect of some traditional processing operations on the chemical, functional, antioxidant, glycaemic index and glycaemic load of groundnut (Arachis hypogea L.) seed flour

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Food processing either enhances or lowers nutritional parameters of agricultural products. Hence, this study investigated effects of some traditional processing methods on chemical, antioxidant, glycaemic index (GI) and load (GL) properties of groundnut kernel flours. The processed flours, i.e., cooked (CGN), germinated (GGN), fermented (FGN), co-germinated-cooked-fermented (GCF) and raw (RGN) flour samples were evaluated for chemical compositions, antioxidant activities, and glycaemic index/load. The crude protein, essential amino acids (+ histidine), aromatic amino acids, branched chain amino acids (g/100 g protein) and Arginine/Lysine ratios of groundnut flours were 10.95–27.0, 24.85–34.41, 43.32–56.5, 6.13–8.87, 11.58–17.33 and 1.33–2.20, respectively. The most abundant fatty acids were oleic acid (37.88–42.38%) and linoleic acid (34.38–39.64%), respectively, while polyunsaturated/saturated fatty acid ratios (1.45–1.82) were higher than recommended value (> 1.0). The minerals in GGN, FGN and GCF were significantly (p < 0.05) higher than CGN and RGN, while phytate- and oxalate-mineral molar ratio of groundnut samples were lower than critical levels. The GI (29–37.9%) and GL (4.4–13.1%) were lower than recommended value for low GI (< 55%) and GL (< 10%). The antioxidant activity, i.e., total phenol, iron chelation, DPPH, OH Free radicals and Ferric reducing antioxidant power were higher in GCF than other samples. The present study established some local processing methods (cooking, germination and fermentation) influenced chemical, antioxidant and glycaemic properties of groundnut. For instance, co-germination-cooking-fermentation increased protein content, antioxidant activity and lower glycaemic index/load (< 55%; < 10%) of groundnut samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. H.A. Malati, Study of air-spora over the groundnut fields in Nashik district of Maharashtra, India. Sch. J. Agric. Vet. Sci. 2, 15–19 (2021)

    Google Scholar 

  2. M. Qin, J. Liang, D. Yang, X. Yang, P. Cao, X. Wang, L. Zhang, Spatial analysis of dietary exposure of aflatoxins in peanuts and peanut oil in different areas of China. Food Res. Int. 140, 109899 (2021)

    Article  CAS  PubMed  Google Scholar 

  3. T. Adlak, S. Tiwari, N. Gupta, M.K. Tripathi, R.S. Sikarwar, R. Sastya, V. Gupta, Assessment for yield and nutritional profiling of groundnut with the help of allele specific markers for desirable fatty acids. Int. J. Curr. Microbiol. Appl. Sci 10(02), 1625–1637 (2021)

    Article  CAS  Google Scholar 

  4. J.Y. Asibuo, R. Akromah, O. Safo-Kantanka, H.K. Adu-Dapaah, S. Ohemeng-Dapaah, A. Agyeman, Chemical composition of groundnut, Arachis hypogaea (L) landraces. Afr. J. Biotechnol. 7(13), 42–47 (2008)

    Google Scholar 

  5. G. Rossi-Márquez, M. Helguera, M. Briones, C.A. Dávalos-Saucedo, P. Di Pierro, Edible coating from enzymatically reticulated whey protein-pectin to improve shelf life on roasted peanuts. Coatings 11(3), 329 (2021)

    Article  CAS  Google Scholar 

  6. R.D. Semba, R. Ramsing, N. Rahman, K. Kraemer, M.W. Bloem, Legumes as a sustainable source of protein in human diets. Glob. Food Secur. 28, 100520 (2021)

    Article  Google Scholar 

  7. A. Singh, S.N. Raina, M. Sharma, M. Chaudhary, S. Sharma, V.R. Rajpal, Functional Uses of Peanut (Arachis hypogaea L.) Seed Storage Proteins (2021)

  8. E.S. Sarita, E. Singh, Potential of millets: nutrients composition and health benefits. J. Sci. Innov. Res. 5(2), 46–50 (2016)

    Article  Google Scholar 

  9. G.W. Meijer, L. Lähteenmäki, R.H. Stadler, J. Weiss, Issues surrounding consumer trust and acceptance of existing and emerging food processing technologies. Crit. Rev. Food Sci. Nutr. 61(1), 97–115 (2021)

    Article  CAS  PubMed  Google Scholar 

  10. A. Ali, B. Fadimatou, C. Tchiegang, C. Saidou, M.B. Adji, Physico-chemical and functional properties of btchi or hypocotyle axes of Borassus aethiopum Mart. Afr. J. Food Sci. 4(10), 635–641 (2010)

    CAS  Google Scholar 

  11. R.S. Gibson, C. Hotz, Dietary diversification/modification strategies to enhance micronutrient content and bioavailability of diets in developing countries. Br. J. Nutr. 85(S2), S159–S166 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. S.M. Hertrich, B.A. Niemira, Advanced processing techniques for extending the shelf life of foods, in Food Safety and Quality-Based Shelf Life of Perishable Foods. ed. by P.J. Taormina, M.D. Hardin (Springer, Cham, 2021), pp. 91–103

    Chapter  Google Scholar 

  13. T.D. Oluwajuyitan, O.S. Ijarotimi, T.N. Fagbemi, G. Oboh, Blood glucose lowering, glycaemic index, carbohydrate-hydrolysing enzyme inhibitory activities of potential functional food from plantain, soy-cake, rice-bran and oat-bran flour blends. J. Food Meas. Charact. 15, 1–9 (2021)

    Article  Google Scholar 

  14. T.D. Oluwajuyitan, O.S. Ijarotimi, T.N. Fagbemi, Nutritional, biochemical and organoleptic properties of high protein-fibre functional foods developed from plantain, defatted soybean, rice-bran and oat-bran flour. Nutr. Food Sci. (2020). https://doi.org/10.1108/NFS-06-2020-0225

    Article  Google Scholar 

  15. A. Jallow, H. Xie, X. Tang, Z. Qi, P. Li, Worldwide aflatoxin contamination of agricultural products and foods: From occurrence to control. Compr. Rev. Food Sci. Food Saf. 20(3), 2332–2381 (2021)

    Article  CAS  PubMed  Google Scholar 

  16. S. Tiwari, B.K. Singh, V. Kishore, N.K. Dubey, Boosting modern technologies with emphasis on biological approaches to potentiate prevention and control of aflatoxins: recent advances. Toxin Rev. 2021, 1–11 (2021)

    Google Scholar 

  17. N. Ishiwu Charles, J.O. Iwouno, E. Obiegbuna James, C. Ezike Tochukwu, Effect of thermal processing on lycopene, beta-carotene and Vitamin C content of tomato [Var. UC82B]. J. Food Nutr. Sci. 2(3), 87–92 (2014)

    Google Scholar 

  18. AOAC, Association of Official Analytical Chemist. Official Methods Analysis Analytical Chemist Intern 18th ed. Gathersburg, MD USA (2012)

  19. B.A. Bidlingmeyer, S.A. Cohen, T.L. Tarvin, Rapid analysis of amino acids using pre-column derivatization. J Chromatogr B Biomed Sci Appl. 336(1), 93–104 (1984)

  20. C.W. Gehrke, L.L. Wall Sr., J.S. Absheer, F.E. Kaiser, R.W. Zumwalt, Sample preparation for chromatography of amino acids: acid hydrolysis of proteins. J. Assoc. Off. Anal. Chem. 68(5), 811–821 (1985)

    CAS  Google Scholar 

  21. J. Landry, S. Delhaye, Simplified procedure for the determination of tryptophan of foods and feedstuffs from barytic hydrolysis. J. Agric. Food Chem. 40(5), 776–779 (1992)

    Article  CAS  Google Scholar 

  22. A.G. Jacob, D.I. Etong, A. Tijjani, Proximate, mineral and anti-nutritional compositions of melon (Citrullus lanatus) seeds. Br. J. Res. 2(5), 142–151 (2015)

    Google Scholar 

  23. P.W. Hoskin, T.R. Ireland, Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28(7), 627–630 (2000)

    Article  CAS  Google Scholar 

  24. S. Georgé, P. Brat, P. Alter, M.J. Amiot, Rapid determination of polyphenols and vitamin C in plant-derived products. J. Agric. Food Chem. 53, 1370–1373 (2005). https://doi.org/10.1021/jf048396b

    Article  CAS  PubMed  Google Scholar 

  25. B.A. Boham, R. Kocipai-Abyazan, Medicinal and Poisonous Plant of Southern and Eastern Africa, 2nd edn. (Livingstone, Edinburgh and London, 1994)

    Google Scholar 

  26. C.S. Jaffe, Analytical Chemistry of Food (Blackie Academic and Professional, New York, 2003), p. 200

    Google Scholar 

  27. A.B. Munro, Oxalate in Nigerian vegetables. West Afr. J. Biol. Appl. Chem. 12(1), 14–18 (2000)

    Google Scholar 

  28. E. Guillamon, M.M. Pedrosa, C. Burbano, C. Cuadrado, M. de Cortes Sánchez, M. Muzquiz, The trypsin inhibitors present in seed of different grain legume species and cultivar. Food Chem. 107(1), 68–74 (2008)

    Article  CAS  Google Scholar 

  29. B.O. Obadoni, P.O. Ochuko, Phytochemical studies and comparative efficacy of the crude extracts of some haemostatic plants in Edo and Delta States of Nigeria. Glob. J. Pure Appl. Sci. 8(2), 203–208 (2002)

    CAS  Google Scholar 

  30. M.E. Norhaizan, A.A. Norfaizadatul, Determination of phytate, iron, zinc, calcium contents and their molar ratios in commonly consumed raw and prepared food in Malaysia. Malays. J. Nutr. 15(2), 213–222 (2009)

    PubMed  Google Scholar 

  31. I.A. Wani, D.S. Sogi, A.A. Wani, B.S. Gill, Physico-chemical and functional properties of flours from Indian kidney bean (Phaseolus vulgaris L.) cultivars. LWT-Food Sci. Technol. 53(1), 278–284 (2013)

    Article  CAS  Google Scholar 

  32. F.W. Sosulski, The centrifugal method for determining flour absorption in hard red spring wheats. Cereal Chem. 39, 344–350 (1962)

    Google Scholar 

  33. B.W. Abbey, G.O. Ibeh, Functional properties of raw and heat processed cowpea (Vigna unguiculata, Walp) flour. J. Food Sci. 53(6), 1775–1777 (1988)

    Article  Google Scholar 

  34. K. Narayana, M.S. Narasinga Rao, Functional properties of raw and heat processed winged bean (Psophocarpus tetragonolobus) flour. J. Food Sci. 47(5), 1534–1538 (1982)

    Article  CAS  Google Scholar 

  35. A.F. Chidi, N.K. Ekene, E. Francis, N.F. Nwalo, N.S. Theophilus, O.R. Nkechinyere, E.E. Nwakaego, Chemical, pasting and sensory characteristics of Ukpo oka-a steamed maize pudding formulated from maize and African yam bean flour. Asian J. Dairy Food Res. 39(1), 73–78 (2020)

    Article  Google Scholar 

  36. A.B. Capule, T.P. Trinidad, Isolation and characterization of native and modified starch from adlay (Coix lacryma jobi-L.). Int. Food Res. J. 23(3), 1199 (2016)

    CAS  Google Scholar 

  37. CCAC, Canadian council on animal care, in Guide to the care and use of experimental animals, 2nd edn, ed by E.D. Olfert, B.M. Cross, A.A. McWilliam (CCAC, Simcoe, 1993)

  38. T.D. Oluwajuyitan, O.S. Ijarotimi, T.N. Fagbemi, Plantain based dough meal: nutritional property, antioxidant activity and dyslipidemia ameliorating potential in high-fat induced rats. Clin. Phytosci. 7(1), 1–16 (2021). https://doi.org/10.1186/s40816-021-00327-8

    Article  CAS  Google Scholar 

  39. F. Brouns, I. Bjorck, K.N. Frayn, A.L. Gibbs, V. Lang, G. Slama, T.M.S. Wolever, Glycaemic index methodology. Nutr. Res. Rev. 18(1), 145–171 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. A.C. Dona, G. Pages, R.G. Gilbert, P.W. Kuchel, Digestion of starch: in vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydr. Polym. 80(3), 599–617 (2010)

    Article  CAS  Google Scholar 

  41. J. Salmeron, J.E. Manson, M.J. Stampfer, G.A. Colditz, A.L. Wing, Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 20, 545–550 (1997)

    Article  CAS  PubMed  Google Scholar 

  42. J. Salmeron, J.E. Manson, M.J. Stampfer, G.A. Colditz, A.L. Wing, W.C. Willett, Dietary fiber, glycaemic load, and risk of non-insulin-dependent diabetes mellitus in women. J. Am. Med. Assoc. 277, 472–477 (1997)

    Article  CAS  Google Scholar 

  43. J.Y. Hwang, Y.S. Shyu, Y.T. Wang, C.K. Hsu, Antioxidative properties of protein hydrolysate from defatted peanut kernels treated with esperase. LWT-Food Sci. Technol. 43(2), 285–290 (2010)

    Article  CAS  Google Scholar 

  44. E.A. Decker, B. Welch, Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 38(3), 674–677 (1990)

    Article  CAS  Google Scholar 

  45. J.L. Mau, H.C. Lin, S.F. Song, Antioxidant properties of several specialty mushrooms. Food Res. Int. 35(6), 519–526 (2002)

    Article  CAS  Google Scholar 

  46. R. Re, N. Pellegrin, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improve ABTS radication decolourization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999)

    Article  CAS  PubMed  Google Scholar 

  47. B. Klein, K.B. Leffler, The role of market forces in assuring contractual performance. J. Polit. Econ. 89(4), 615–641 (1981)

    Article  Google Scholar 

  48. International Seed Testing Association, Rules for seed sampling (2012)

  49. NIS, Nigerian Industrial Standard. Standard for edible cassava flour (2004)

  50. V.N. Atasie, T.F. Akinhanmi, C.C. Ojiodu, Proximate analysis and physico-chemical properties of groundnut (Arachis hypogaea L.). Pak. J. Nutr. 8(2), 194–197 (2009)

    Article  CAS  Google Scholar 

  51. M.A.Y. Abdualrahman, Chemical, in-vitro protein digestibility, mineral and amino acid composition of edible peanut seed (Arachis hypogaea L.). Sci. Int. 1(6), 199–202 (2013)

    Article  CAS  Google Scholar 

  52. O.K. Achi, Quality attributes of fermented yam flour supplemented with processed soy flour. Plant Foods Hum. Nutr. 54(2), 151–158 (1999)

    Article  CAS  PubMed  Google Scholar 

  53. I.A. Onimawo, E.C. Nmerole, P.I. Idoko, P.I. Akubor, Effects of fermentation on nutrient content and some functional properties of pumpkin seed (Telfaria occidentalis). Plant Foods Hum. Nutr. 58(3), 1–9 (2003)

    Google Scholar 

  54. V.N. Enujiugha, Nutrient changes during the fermentation of African oil bean (Pentaclethra macrophyfla Benth) seeds. Pak. J. Nutr. 2(5), 320–323 (2003)

    Article  Google Scholar 

  55. F.J.C. Odibo, E. Nwabunnia, D.I. Osuigwe, Biochemical changes during fermentation of Telfairia seeds for ogiri production. World J. Microbiol. Biotechnol. 6(4), 425–427 (1990)

    Article  CAS  PubMed  Google Scholar 

  56. H.N. Ogungbenle, Chemical, functional properties and amino acid composition of raw and defatted cashew kernel. Am. Chem. Sci. J. 4(3), 348–356 (2014)

    Article  Google Scholar 

  57. S. Ingale, S.K. Shrivastava, Nutritional study of new variety of groundnut (Arachis hypogaea L.) JL-24 seeds. Afr. J. Food Sci. 5(8), 490–498 (2011)

    CAS  Google Scholar 

  58. O.R. Adegbanke, D.O. Ojo-Uyi, T.D. Oluwajuyitan, Application of Bambara groundnut in the production of cookies. Food Sci Qual Manag. 83, 56–60 (2019)

  59. V. Kumar, A. Sharma, R. Kaur, A.K. Thukral, R. Bhardwaj, P. Ahmad, Differential distribution of amino acids in plants. Amino Acids 49(5), 821–869 (2017)

    Article  CAS  PubMed  Google Scholar 

  60. G. Zhang, Z. Xu, Y. Gao, X. Huang, Y. Zou, T. Yang, Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. J. Food Sci. 80(5), H1111–H1119 (2015)

    Article  CAS  PubMed  Google Scholar 

  61. M.A. Osman, Effect of traditional fermentation process on the nutrient and antinutrient contents of pearl millet during preparation of Lohoh. J. Saudi Soc. Agric. Sci. 10(1), 1–6 (2011)

    CAS  Google Scholar 

  62. Y. Pranoto, S. Anggrahini, Z. Efendi, Effect of natural and Lactobacillus plantarum fermentation on invitro protein and starch digestibilities of sorghum flours. Food Biosci. 2, 46–52 (2013). https://doi.org/10.1016/j.fbio.2013.04.001

    Article  CAS  Google Scholar 

  63. Y. Pranoto, S. Anggrahini, Z. Efendi, Effect of natural and Lactobacillus plantarum fermentation on in-vitro protein and starch digestibilities of sorghum flour. Food Biosci. 2, 46–52 (2013)

    Article  CAS  Google Scholar 

  64. S.O. Ijarotimi, Influence of germination and fermentation on chemical composition, protein quality and physical properties of wheat flour (Triticum aestivum). J. Cereals Oilseeds 3(3), 35–47 (2012)

    CAS  Google Scholar 

  65. B.L. Oser, An integrated essential amino acid index for predicting the biological value of proteins, in Protein and amino acid nutrition. ed. by A. Albanese (Elsevier, Amsterdam, 1959), p. 281

    Google Scholar 

  66. A.C. Ogbonna, C.I. Abuajah, E.O. Ide, U.S. Udofia, Effect of malting conditions on the nutritional and anti-nutritional factors of sorghum grist The Annals of the University Dunarea de Jos of Galati. Fascicle VI-Food Technol. 36(2), 64–72 (2012)

    CAS  Google Scholar 

  67. D.E. McOsker, The limiting amino acid sequence in raw and roasted peanut protein. J. Nutr. 76(4), 453–459 (1962)

    Article  CAS  Google Scholar 

  68. B.L. Jani, B.M. Devani, Peanut protein: rich source as vegan protein. J. Food Sci. Nutr. 6, 059 (2020). https://doi.org/10.24966/FSN-1076/100059

    Article  Google Scholar 

  69. J.K. Chan, V.M. Bruce, B.E. McDonald, Dietary α-linolenic acid is as effective as oleic acid and linoleic acid in lowering blood cholesterol in normolipidemic men. Am. J. Clin. Nutr. 53(5), 1230–1234 (1991)

    Article  CAS  PubMed  Google Scholar 

  70. M.S. Farvid, M. Ding, A. Pan, Q. Sun, S.E. Chiuve, L.M. Steffen, F.B. Hu, Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Circulation 130(18), 1568–1578 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. N.W. Chang, P.C. Huang, Effects of the ratio of polyunsaturated and monounsaturated fatty acid to saturated fatty acid on rat plasma and liver lipid concentrations. Lipids 33(5), 481–487 (1998). https://doi.org/10.1007/s11745-998-0231-9

    Article  CAS  PubMed  Google Scholar 

  72. O.S. Ijarotimi, T.D. Oluwajuyitan, G.T. Ogunmola, Nutritional, functional and sensory properties of gluten-free composite flour produced from plantain (Musa AAB), tigernut tubers (Cyperus esculentus) and defatted soybean cake (Glycine max). Croat. J. Food Sci. Technol. 11(1), 1131–1251 (2019)

  73. B.P. Ander, C.M. Dupasquier, M.A. Prociuk, G.N. Pierce, Polyunsaturated fatty acids and their effects on cardiovascular disease. Exp. Clin. Cardiol. 8(4), 164–172 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  74. J.O. Amarteifio, O. Tibe, R.M. Njogu, The mineral composition of bambara groundnut (Vigna subterranea (L) Verdc) grown in Southern Africa. Afr. J. Biotechnol. 5(23), 2408 (2006)

    CAS  Google Scholar 

  75. Y. Yao, S. Gao, X. Ding, Q. Zhang, P. Li, Topography effect on Aspergillus flavus occurrence and aflatoxin B1 contamination associated with peanut. Curr. Res. Microb. Sci. 2, 100021 (2021)

    PubMed  PubMed Central  Google Scholar 

  76. A.D. Desai, S.S. Kulkarni, A.K. Sahoo, R.C. Ranveer, P.B. Dandge, Effect of supplementation of malted ragi flour on the nutritional and sensorial quality characteristics of cake. Adv. J. Food Sci. Technol. 2(1), 67–71 (2010)

    Google Scholar 

  77. G. Laxmi, N. Chaturvedi, S. Richa, The impact of malting on nutritional composition of foxtail millet, wheat and chickpea. J. Nutr. Food Sci. 5(5), 1–3 (2015)

    Google Scholar 

  78. M. Oghbaei, J. Prakash, Effect of primary processing of cereals and legumes on its nutritional quality: a comprehensive review. Cogent Food Agric. 2(1), 1136015 (2016)

    Google Scholar 

  79. P. Ojha, R. Adhikari, R. Karki, A. Mishra, U. Subedi, T.B. Karki, Malting and fermentation effects on antinutritional components and functional characteristics of sorghum flour. Food Sci. Nutr. 6(1), 47–53 (2018)

    Article  CAS  PubMed  Google Scholar 

  80. O.C. Enechi, I. Odonwodo, An assessment of the phytochemical and nutrient composition of the pulverized root of Cissus quadrangularis. Bio-research 1(1), 63–68 (2003)

    Google Scholar 

  81. K.O. Soetan, O.E. Oyewole, The need for adequate processing to reduce the Antinutritional factors in plants used as human foods and animal feeds: a review. Afr. J. Food Sci. 3(9), 223–232 (2009)

    CAS  Google Scholar 

  82. A.Z. Woldegiorgis, D. Abate, G.D. Haki, G.R. Ziegler, Major, minor and toxic minerals and anti-nutrients composition in edible mushrooms collected from Ethiopia. J. Food Process. Technol. 6(3), 234–244 (2015)

    Google Scholar 

  83. D. Siegenberg, R.D. Baynes, T.H. Bothwell, B.J. Macfarlane, R.D. Lamparelli, N.G. Car, F. Mayet, Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption. Am. J. Clin. Nutr. 53(2), 537–541 (1991)

    Article  CAS  PubMed  Google Scholar 

  84. E.R. Morris, R. Ellis, Usefulness of the dietary phytic acid/zinc molar ratio as an index of zinc bioavailability to rats and humans. Biol. Trace Elem. Res. 19(1), 107–117 (1989)

    Article  CAS  PubMed  Google Scholar 

  85. C. Frontela, G. Ros, C. Martínez, Effect of dephytinization on bioavailability of iron, calcium and from infant cereals assessed in the Caco-2 cell model. World J. Gastroenterol. 15(16), 1977–1984 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. V. Handa, V. Kumar, A. Panghal, S. Suri, J. Kaur, Effect of soaking and germination on physicochemical and functional attributes of horsegram flour. J. Food Sci. Technol. 54(13), 4229–4239 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. R.V. Jaybhaye, P.P. Srivastav, Development of barnyard millet ready-toeat snack food: part II. Food Sci. Res. J. 6(2), 285–291 (2015)

    Article  Google Scholar 

  88. P. Sharma, H.S. Gujral, Extrusion of hulled barley afecting β-glucan and properties of extrudates. Food Bioprocess. Technol. 6(6), 1374–1389 (2013)

    Article  CAS  Google Scholar 

  89. P. Sharma, H.S. Gujral, C.M. Rosell, Efects of roasting on barley β-glucan, thermal, textural and pasting properties. J. Cereal Sci. 53(1), 25–30 (2011)

    Article  CAS  Google Scholar 

  90. A.E.O. Elkhalifa, R. Bernhardt, Infuence of grain germination on functional properties of sorghum four. Food Chem. 121(2), 387–392 (2010)

    Article  CAS  Google Scholar 

  91. Y.F. Cheng, R. Bhat, Functional, physicochemical and sensory properties of novel cookies produced by utilizing underutilized jering (Pithecellobium jiringa Jack.) legume flour. Food Biosci. 14, 54–61 (2016)

    Article  CAS  Google Scholar 

  92. W. Prinyawiwatkul, L.R. Beuchat, K.H. McWatters, R.D. Phillips, Fermented cowpea flour: production and characterization of selected physico-chemical properties. J. Food Process. Preserv. 20(4), 265–284 (1996)

    Article  Google Scholar 

  93. H.N. Englyst, M.E. Quigley, G.J. Hudson, Definition and measurement of dietary fibre. Eur. J. Clin. Nutr. 49, S48–S62 (1995)

    PubMed  Google Scholar 

  94. N.L. Soh, J. Brand-Miller, The glycemic index of potatoes: the effect of variety, cooking method and maturity. Eur. J. Clin. Nutr. 53(4), 249–254 (1999). https://doi.org/10.1038/sj.ejcn.1600713

    Article  CAS  PubMed  Google Scholar 

  95. C. de Oliveira Lopes, M.D.F.P. Barcelos, C.N. de Goes Vieira, W.C. de Abreu, E.B. Ferreira, R.C. Pereira, M.C. de Angelis-Pereira, Effects of sprouted and fermented quinoa (Chenopodium quinoa) on glycemic index of diet and biochemical parameters of blood of Wistar rats fed high carbohydrate diet. J. Food Sci. Technol. 56(1), 40–48 (2019)

    Article  CAS  Google Scholar 

  96. N.C. Ihediohanma, Determination of the glycemic indices of three different cassava granules (Garri) and the effect of fermentation period on their glycemic responses. Pak. J. Nutr. 10(1), 6–9 (2011)

    Article  CAS  Google Scholar 

  97. D.S. Ludwig, The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 287(18), 2414–2423 (2002)

    Article  CAS  PubMed  Google Scholar 

  98. E.M. Ostman, Y. Granfeldt, L. Persson, I.M.E. Bjorck, Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects. Eur. J. Clin. Nutr. 59, 983–988 (2005). https://doi.org/10.1038/sj.ejcn.1602197

    Article  CAS  PubMed  Google Scholar 

  99. E.M. Ostman, M. Nilsson, H.G.M. Liljeberg Elmstah, G. Molin, I.M.E. Bjorck, On the effect of lactic acid on blood glucose and insulin responses to cereal products: mechanistic studies in healthy subjects and in vitro. J. Cereal Sci. 36, 339–346 (2002)

    Article  CAS  Google Scholar 

  100. F. Scazzina, D. Del Rio, N. Pellegrini, F. Brighenti, Sourdough bread: starch digestibility and postprandial glycemic response. J. Cereal Sci. 49, 419–421 (2008)

    Article  CAS  Google Scholar 

  101. N. Hakimah, M. Yunus, S. Sucipto, W. Wignyanto, A. Aulanni’am, Nutritional composition, glycemic index and glycemic load on Indonesian local package menus. Food Res. 4(3), 722–730 (2020)

    Article  Google Scholar 

  102. M. Anusha, M. Venkateswarlu, V. Prabhakaran, S.S. Taj, B.P. Kumari, D. Ranganayakulu, Hepatoprotective activity of aqueous extract of Portulaca oleracea in combination with lycopene in rats. Indian J. Pharmacol. 43(5), 563 (2011)

  103. T.D. Oluwajuyitan, O.S. Ijarotimi, Nutritional, antioxidant, glycaemic index and antihyperglycaemic properties of improved traditional plantain-based (Musa ABB), dough meal enriched with tigernut (Cyperus esculentus) and defatted soybeans (Glycine max) cake for diabetics patients. Heliyon 5, e1504–e1509 (2019). https://doi.org/10.1016/j.heliyon.2019.e01504

    Article  Google Scholar 

  104. R. Pérez-Gregorio, S. Soares, N. Mateus, V. de Freitas, Bioactive peptides and dietary polyphenols: two sides of the same coin. Molecules (Basel, Switzerland) 25(15), 3443 (2020). https://doi.org/10.3390/molecules25153443

    Article  CAS  Google Scholar 

  105. S.F. Adebayo, S.O. Arinola, Effect of germination on the nutrient and antioxidant properties of tigernut (Cyperus esculentus). J. Biol. Agric. Healthc. 7(18), 88–94 (2017)

    Google Scholar 

  106. B.S. Oladeji, C.T. Akanbi, S.O. Gbadamosi, Effects of fermentation on antioxidant properties of flours of a normal endosperm and quality protein maize varrieties. Food Measure. 11, 1148–1158 (2017). https://doi.org/10.1007/s11694-017-9491-8

    Article  Google Scholar 

  107. O.S. Ijarotimi, D.A. Fakayejo, T.D. Oluwajuyitan, Nutritional characteristics, glycaemic index and blood glucose lowering property of gluten-free composite flour from wheat (Triticum aestivum), soybean (Glycine max), oat-bran (Avena sativa) and rice-bran (Oryza sativa). Appl. Food Res. 1(2), 100022 (2021). https://doi.org/10.1016/j.afres.2021.100022

    Article  Google Scholar 

  108. O.S. Ijarotimi, H.I. Adesanya, T.D. Oluwajuyitan, Nutritional, antioxidant, angiotensin converting-enzyme and carbohydrate hydrolyzing-enzyme inhibitory activities of underutilized leafy vegetable: African wild lettuce (Lactuca taraxacifolia Willd). Clin. Phytosci. 47(7), 1–13 (2021). https://doi.org/10.1186/s40816-021-00282-4

    Article  CAS  Google Scholar 

  109. A.L. Rao, M. Bharani, V. Pallavi, Role of antioxidants and free radicals in health and disease. Adv. Pharmacol. Toxicol. 7, 29–38 (2006)

    Google Scholar 

  110. R. Blomhoff, M.H. Carlsen, L.F. Andersen, D.R. Jacobs, Health benefits of nuts: potential role of antioxidant. Br. J. Nutr. 96(S2), S52-60 (2006)

    Article  CAS  PubMed  Google Scholar 

  111. P. Udomkun, A.N. Wiredu, M. Nagle, J. Muller, B. Vanlauwe, R. Bandyopadhyay, Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application: a review. Food Control 76, 127–138 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. E.N.K. Sowley, Aflatoxins: A silent threat in developing countries. Afr. J. Biotechnol. 15(35), 1864–1870 (2016)

  113. H. Magoha, M. Kimanya, B. Meulenaer, D. Roberfroid, C. Lachat, P. Kolsteren, Risk of dietary exposure to aflatoxins and fumonisins in infants less than 6 months of age in Rombo, Northern Tanzania. Maternal Child Nutr. 12, 516 (2016)

    Article  Google Scholar 

  114. D. Ofori-Adjei, Aflatoxin exposure in pregnant women in Ghana. Ghana Med. J. 46(4), 178 (2012)

    PubMed  PubMed Central  Google Scholar 

  115. M.O. Moss, Risk assessment for aflatoxins in foodstuffs. Int. Biodeterior. Biodegrad. 50(3–4), 137–142 (2002)

    Article  CAS  Google Scholar 

  116. V.K. Nakai, L. de Oliveira Rocha, E. Gonçalez, H. Fonseca, E.M.M. Ortega, B. Correa, Distribution of fungi and aflatoxins in a stored peanut variety. Food Chem. 106(1), 285–290 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timilehin David Oluwajuyitan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ijarotimi, O.S., Ogunmola, T.G. & Oluwajuyitan, T.D. Effect of some traditional processing operations on the chemical, functional, antioxidant, glycaemic index and glycaemic load of groundnut (Arachis hypogea L.) seed flour. Food Measure 16, 2024–2040 (2022). https://doi.org/10.1007/s11694-022-01320-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01320-6

Keywords

Navigation