Skip to main content
Log in

Differential distribution of amino acids in plants

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Plants are a rich source of amino acids and their individual abundance in plants is of great significance especially in terms of food. Therefore, it is of utmost necessity to create a database of the relative amino acid contents in plants as reported in literature. Since in most of the cases complete analysis of profiles of amino acids in plants was not reported, the units used and the methods applied and the plant parts used were different, amino acid contents were converted into relative units with respect to lysine for statistical analysis. The most abundant amino acids in plants are glutamic acid and aspartic acid. Pearson’s correlation analysis among different amino acids showed that there were no negative correlations between the amino acids. Cluster analysis (CA) applied to relative amino acid contents of different families. Alismataceae, Cyperaceae, Capparaceae and Cactaceae families had close proximity with each other on the basis of their relative amino acid contents. First three components of principal component analysis (PCA) explained 79.5% of the total variance. Factor analysis (FA) explained four main underlying factors for amino acid analysis. Factor-1 accounted for 29.4% of the total variance and had maximum loadings on glycine, isoleucine, leucine, threonine and valine. Factor-2 explained 25.8% of the total variance and had maximum loadings on alanine, aspartic acid, serine and tyrosine. 14.2% of the total variance was explained by factor-3 and had maximum loadings on arginine and histidine. Factor-4 accounted 8.3% of the total variance and had maximum loading on the proline amino acid. The relative content of different amino acids presented in this paper is alanine (1.4), arginine (1.8), asparagine (0.7), aspartic acid (2.4), cysteine (0.5), glutamic acid (2.8), glutamine (0.6), glycine (1.0), histidine (0.5), isoleucine (0.9), leucine (1.7), lysine (1.0), methionine (0.4), phenylalanine (0.9), proline (1.1), serine (1.0), threonine (1.0), tryptophan (0.3), tyrosine (0.7) and valine (1.2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abudayeh ZH, Lamazian HR, Sereda P, Chekman I, Al Khalifa II, Al Azzam KM, Hassouneh LK (2016) Comparative study of amino acid composition in the seeds, pulp and rind from Citrullus colocynthis fruits. J Pharmacogn Phytochem 8:433–437

    Google Scholar 

  • Amata IA (2012) Comparative evaluation of the amino acid and mineral contents of the fruits of Gmelina arborea tree during growth and development. Int J Plant Environ Sci 2:264–269

    CAS  Google Scholar 

  • Atanasova E (2008) Effect of nitrogen sources on the nitrogenous forms and accumulation of amino acid in head cabbage. Plant Soil Environ 54:66–71

    CAS  Google Scholar 

  • Audu BS, Ofojekwu PC, Ujah A, Ajima MN (2014) Phytochemical, proximate composition, amino acid profile and characterization of Marijuana (Cannabis sativa L.). J Phytopharm 3:35–43

    Google Scholar 

  • Auestad N, Fulgoni VL (2015) What current literature tells us about sustainable diets: emerging research linking dietary patterns, environmental sustainability, and economics. Adv Nutr 6:19–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaver MB, Beaver JR, Mendenhall W (2012) Introduction to probability and statistics. Cengage Learning, New Delhi

    Google Scholar 

  • Benjama O, Masniyom P (2011) Nutritional composition and physicochemical properties of two green seaweeds (Ulva pertusa and U. intestinalis) from the Pattani Bay in Southern Thailand. Songklanakarin J Sci Technol 33:575–583

    CAS  Google Scholar 

  • Bhullar NK, Gruissem W (2013) Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnol Adv 31:50–57

    Article  CAS  PubMed  Google Scholar 

  • Bolanle AO, Funmilola AS, Adedayo A (2014) Proximate analysis, mineral contents, amino acid composition, anti-nutrients and phytochemical screening of Brachystegia Eurycoma Harms and Pipper Guineense Schum and Thonn. Am J Food Nutr 2:11–17

    CAS  Google Scholar 

  • Bouaziz MA, Besbes S, Blecker C, Wathelet B, Deroanne C, Attia H (2008) Protein and amino acid profiles of Tunisian Deglet Nour and Allig date palm fruit seeds. Fruits 63:37–43

    Article  CAS  Google Scholar 

  • Boyd CE (1973) Amino acid composition of freshwater algae. Arch Hydrobiol 72:1–9

    Google Scholar 

  • Burch D, Lawrence G, Green GP, Ichijo K, Nonaka I, Pimentel M, Carneiro MJ (2007) World Development Report 2008: Agriculture for Development (No. E14 231) The World Bank

  • Carlotti ME, Gallarate M, Gasco MR, Morel S, Serafino A, Ugazio E (1997) Synergistic action of vitamin C and amino acids on vitamin E in inhibition of the lipoperoxidation of linoleic acid in disperse systems. Int J Pharm 155:251–261

    Article  CAS  Google Scholar 

  • Carrera CS, Reynoso CM, Funes GJ, Martínez MJ, Dardanelli J, Resnik SL (2011) Amino acid composition of soybean seeds as affected by climatic variables. Pesq Agropecu Bras 46:1579–1587

    Article  Google Scholar 

  • Choi SC, Lim SH, Kim SH, Choi DG, Kim JG, Choo YS (2012) Growth and solute pattern of Suaeda maritima and Suaeda asparagoides in an abandoned salt field. J Ecol Environ 35:351–358

    Article  Google Scholar 

  • Choi HS, Jang SJ, Park HJ, Yun YB, Kuk YI (2015) Regeneration, nutritional values, and antioxidants in excised adventitious shoot of radish affected by dark treatment. J Food Nutr Res 3:365–370

    Article  Google Scholar 

  • Chuang LT, Glew RH, Wang YC, Yao PW, Lin CC, Presley JM, Schulze J, Hou CW (2011) Comparison of the fatty acid, amino acid, mineral and antioxidant content of sweet potato leaves grown on Matsu island and mainland Taiwan. Glob Sci Books 5:43–47

    Google Scholar 

  • Dewanji A (1993) Amino acid composition of leaf proteins extracted from some aquatic weeds. J Agric Food Chem 41:1232–1236

    Article  CAS  Google Scholar 

  • FAO (2013) The State of Food Insecurity in the World. International scientific symposium: the multiple dimensions of food security. Rome (Italy): Food and Agriculture Organization of the United Nations (2013). http://www.fao.org/docrep/018/i3434e/i3434e00.htm. Accessed 20 Nov 2015

  • Fischer WN, André B, Rentsch D, Krolkiewicz S, Tegeder M, Breitkreuz K, Frommer WB (1998) Amino acid transport in plants. Trends Plant Sci 3:188–195

    Article  Google Scholar 

  • Fu HY, Shieh DE, Ho CT (2002) Antioxidant and free radical scavenging activities of edible mushrooms. J Food Lipids 9:35–43

    Article  CAS  Google Scholar 

  • Gafar MK, Hassan LG, Dangoggo SM, Itodo AU (2010) Amino acid estimation and phytochemical screening of Indigofera astragolina leaves. J Chem Pharm Res 2:277–285

    CAS  Google Scholar 

  • Galili G, Amir R (2013) Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. Plant Biotechnol J 2:211–222

    Article  Google Scholar 

  • Galili G, Höfgen R (2002) Metabolic engineering of amino acids and storage proteins in plants. Metab Eng 4:3–11

    Article  CAS  PubMed  Google Scholar 

  • Gioseffi E, Neergaard AD, Schjørring JK (2012) Interactions between uptake of amino acids and inorganic nitrogen in wheat plants. Biogeosciences 9:1509–1518

    Article  CAS  Google Scholar 

  • Glew RH, VanderJagt DJ, Lockett C, Grivetti LE, Smith GC, Pastuszyn A, Millson M (1997) Amino acid, fatty acid, and mineral composition of 24 indigenous plants of Burkina Faso. J Food Comp Anal 10:205–217

    Article  CAS  Google Scholar 

  • Glew RS, Vanderjagt DJ, Chuang LT, Huang YS, Millson M, Glew RH (2005) Nutrient content of four edible wild plants from West Africa. Plant Foods Hum Nutr 60:187–193

    Article  CAS  PubMed  Google Scholar 

  • Glew RH, Glew RS, Chuang LT, Huang YS, Millson M, Constans D, Vanderjagt DJ (2006) Amino acid, mineral and fatty acid content of pumpkin seeds (Cucurbita spp) and Cyperus esculentus nuts in the Republic of Niger. Plant Foods Hum Nutr 61:49–54

    Article  Google Scholar 

  • Glew RH, Kramer JK, Hernandez M, Pastuszyn A, Ernst J, Djomdi NN, Jagt DJ (2010) The amino acid, mineral and fatty acid content of three species of human plant foods in Cameroun. Food 4:1–6

    Google Scholar 

  • Glew RH, Laabes EP, Presley JM, Schulze J, Andrews R, Wang YC, Chang YC, Chuang LT (2013) Fatty acid, amino acid, mineral and antioxidant contents of acha (Digitaria exilis) grown on the Jos Plateau, Nigeria. Int J Nutr Meta 5:1–8

    CAS  Google Scholar 

  • Gomes MH, Rosa E (2000) Free amino acid composition in primary and secondary inflorescences of 11 broccoli (Brassica oleracea var italica) cultivars and its variation between growing seasons. J Sci Food Agric 81:295–299

    Article  Google Scholar 

  • Gressler V, Yokoya NS, Fujii MT, Colepicolo P, Mancini Filho J, Torres RP, Pinto E (2010) Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem 120:585–590

    Article  CAS  Google Scholar 

  • Hagan ND, Upadhyaya N, Tabe LM, Higgins TJ (2003) The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein. Plant J 34:1–11

    Article  CAS  PubMed  Google Scholar 

  • Höfgen R, Kreft O, Willmitzer L, Hesse H (2001) Manipulation of thiol contents in plants. Amino Acids 20:291–299

    Article  PubMed  Google Scholar 

  • Hussein OS, Ahmed AH, Ghalab AR, El-Hefny AM (2012) Some active ingredients, total protein and amino acids in plants produced from irradiated Ambrosia maritime seeds growing under different soil salinity levels. Am J Plant Physiol 7:70–83

    Article  CAS  Google Scholar 

  • Ivanova P, Chalova V, Koleva L, Pishtiyski I (2013) Amino acid composition and solubility of proteins isolated from sunflower meal produced in Bulgaria. Int Food Res J 20:2995–3000

    Google Scholar 

  • Kadnikova IA, Costa R, Kalenik TK, Guruleva ON, Yanguo S (2015) Chemical composition and nutritional value of the mushroom Auricularia auricula-judae. J Food Nutr Res 3:478–482

    Google Scholar 

  • Kieloch R, Sadowski J, Domaradzki K (2013) Amino acid content and biomass productivity of selected weed species as an indicator of their response to herbicide stress. Acta Agrobot 66:81–88

    Article  Google Scholar 

  • Kim YK, Suh SY, Uddin MR, Kim YB, Kim HH, Lee SW, Park SU (2013) Variation in amino acid content among three aloe species. Asian J Chem 25:6346–6348

    CAS  Google Scholar 

  • Kivrak İ (2015) Free amino acid profiles of 17 Turkish unifloral honeys. J Liq Chromatogr Relat Technol 38:855–862

    Article  CAS  Google Scholar 

  • Kıvrak İ (2015) Analytical methods applied to assess chemical composition, nutritional value and in vitro bioactivities of Terfezia olbiensis and Terfezia claveryi from Turkey. Food Anal Methods 5:1279–1293

    Article  Google Scholar 

  • Kıvrak İ, Kıvrak Ş, Harmandar M (2014) Free amino acid profiling in the giant puffball mushroom (Calvatia gigantea) using UPLC–MS/MS. Food Chem 158:88–92

    Article  PubMed  Google Scholar 

  • Koga R, Meng T, Nakamura E, Miura C, Irino N, Devkota HP, Yahara S, Kondo R (2013) The effect of photo-irradiation on the growth and ingredient composition of young green barley (Hordeum vulgare). Agric Sci 4:185–194

    Google Scholar 

  • Kubmarawa D, Magomya AM (2009) Proximate composition and amino acid profile of two non-conventional leafy vegetables (Hibiscus cannabinus and Haematostaphis barteri). Afr J Food Sci 3:233–236

    CAS  Google Scholar 

  • Kubmarawa D, Magomya AM, Yebpella GG, Adedayo SA (2011) Nutrient content and amino acid composition of the leaves of Cassia tora and Celtis integrifolia. Int Res J Biochem Bioinform 1:222–225

    Google Scholar 

  • Kubmarawa D, Shangal MH, Diwu BG (2013) Amino acid profile of Amaranthus caudatus. E3 J Biotechnol Pharm Res 4:68–72

    Google Scholar 

  • Kumar V, Sharma A, Thukral AK, Bhardwaj R (2015) Amino acid profiling of the leaves of plants in the vicinity of river Beas, India. J Chem Pharma Res 7:504–510

    CAS  Google Scholar 

  • Kuo YH, Ikegami F, Lambein F (2003) Neuroactive and other free amino acids in seed and young plants of Panax ginseng. Phytochemistry 62:1087–1091

    Article  CAS  PubMed  Google Scholar 

  • Lam HM, Chiu J, Hsieh MH, Meisel L, Oliveira IC, Shin M, Coruzzi G (1998) Glutamate-receptor genes in plants. Nature 396:125–126

    Article  CAS  PubMed  Google Scholar 

  • Li C, Ni D (2016) Effect of fluoride on the amino acid composition of Tea leaves. Fluoride 49:266–270

    Google Scholar 

  • Lingyun Y, Jian W, Chenggang W, Shan L, Shidong Z (2016) Effect of zinc enrichment on growth and nutritional quality in Pea sprouts. J Food Nutr Res 4:100–107

    Google Scholar 

  • Martínez-Lüscher J, Torres N, Hilbert G, Richard T, Sánchez-Díaz M, Delrot S, Aguirreolea J, Pascual I, Gomès E (2014) Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries. Phytochemistry 102:106–114

    Article  PubMed  Google Scholar 

  • Matanjun P, Mohamed S, Mustapha NM, Muhammad K (2009) Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J Appl Phycol 21:75–80

    Article  CAS  Google Scholar 

  • McCusker S, Buff PR, Yu Z, Fascetti AJ (2014) Amino acid content of selected plant, algae and insect species: a search for alternative protein sources for use in pet foods. J Nutr Sci 3:1–5

    Article  Google Scholar 

  • Millward DJ, Layman DK, Tomé D, Schaafsma G (2008) Protein quality assessment: impact of expanding understanding of protein and amino acid needs for optimal health. Am J Clin Nutr 87:1576S–1581S

    CAS  PubMed  Google Scholar 

  • Moe LA (2013) Amino acids in the rhizosphere: from plants to microbes. Am J Bot 100:1692–1705

    Article  CAS  PubMed  Google Scholar 

  • Moyo B, Masika PJ, Hugo A, Muchenje V (2011) Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. Afr J Biotechnol 10:12925–12933

    Article  CAS  Google Scholar 

  • Nguyen HC, Hoefgen R, Hesse H (2012) Improving the nutritive value of rice seeds: elevation of cysteine and methionine contents in rice plants by ectopic expression of a bacterial serine acetyltransferase. J Exp Bot 16:5991–6001

    Article  Google Scholar 

  • Nuccio ML, Rhodest D, McNeil SD, Hanson AD (1999) Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 2:128–134

    Article  CAS  PubMed  Google Scholar 

  • Nwidu LL, Cilli EM, Vilegas W (2012) Amino acid, antioxidant and ion profiles of Carpolobia lutea leaf (Polygalaceae). Trop J Pharm Res 11:807–813

    CAS  Google Scholar 

  • Ogungbenle HN, Otemuyiwa FF (2015) Food properties and amino acid composition of Celosia Spicata leaves. Adv Anal Chem 5:1–7

    Article  CAS  Google Scholar 

  • Okereke CJ, Akaninwor JO (2013) The protein quality of raw leaf, seed and root of Moringa oleifera grown in rivers state, Nigeria. Ann Biol Res 4:34–38

    CAS  Google Scholar 

  • Omoyeni OA, Olaofe O, Akinyeye RO (2015) Amino acid composition of ten commonly eaten indigenous leafy vegetables of South-West Nigeria. World J Nutr Health 3:16–21

    Google Scholar 

  • Ortiz J, Uquiche E, Robert P, Romero N, Quitral V, Llantén C (2008) Functional and nutritional value of the Chilean seaweeds, Codium fragile, Gracilaria chilensis and Macrocystis pyrifera. Eur J Lipid Sci Tech 111:320–327

    Article  Google Scholar 

  • Ortiz-Lopez A, Chang HC, Bush DR (2000) Amino acid transporters in plants. Biochim Biophys Acta (BBA) Biomembr 1465:275–280

    Article  CAS  Google Scholar 

  • Osman HE, Badawy RK (2013) Effect of pollution on the chemical content and secondary metabolites of Zygophyllum coccineum and Tamarix nilotica. Egypt Pharm J 12:73

    Google Scholar 

  • Park JS (2016) Amino acid content in Rhododendron schlippenbachii Maxim flowers in different colors. Biosci Biotechnol Res Asia 13:1285–1289

    Article  Google Scholar 

  • Pathak A, Vajpai K, Vajpai SK (2012) Phytochemical investigation of plant seeds of Chhattisgarh: amino acid composition of seeds of Butea monosperma and Ocimum gratissium. Biomed Pharm J 1:45–49

    Article  Google Scholar 

  • Pratelli R, Pilot G (2014) Regulation of amino acid metabolic enzymes and transporters in plants. J Exp Bot 65:5535–5556

    Article  CAS  PubMed  Google Scholar 

  • Rawat S, Singh CP, Rawat GS (2009) Chemical analysis of a fodder tree leaves (Millettia auriculata). Asian J Chem 21:4179–4182

    CAS  Google Scholar 

  • Sena LP, Vanderjagt DJ, Rivera C, Tsin AT, Muhamadu I, Mahamadou O, Millson M, Pastuszyn A, Glew RH (1998) Analysis of nutritional components of eight famine foods of the Republic of Niger. Plant Foods Hum Nutr 52:17–30

    Article  CAS  PubMed  Google Scholar 

  • Sha SH, Schacht J (2000) Antioxidants attenuate gentamicin-induced free radical formation in vitro and ototoxicity in vivo: d-methionine is a potential protectant. Hear Res 142:34–40

    Article  CAS  PubMed  Google Scholar 

  • Sodamade A, Bolaji OS, Owonikoko AD (2015) The nutritive value and amino acid characteristics of Solanum aethiopicum leaf protein concentrates. Int J Adv Res Chem Sci 2:28–33

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. W.H. Freeman, New York

    Google Scholar 

  • Sun SM, Cho SY, Shin TS, Chung GH, Ahn CB, Kim D (2012) Variation in the chemical composition of Capsosiphon fulvescens with area and during the harvest period. J Appl Phycol 24:459–465

    Article  CAS  Google Scholar 

  • Tegeder M (2012) Transporters for amino acids in plant cells: some functions and many unknowns. Curr Opin Plant Biol 15:315–321

    Article  CAS  PubMed  Google Scholar 

  • Tegeder M (2014) Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement. J Exp Bot. doi:10.1093/jxb/eru012

    PubMed Central  Google Scholar 

  • Tessari P, Lante A, Mosca G (2016) Essential amino acids: master regulators of nutrition and environmental footprint. Sci Rep 6:26074. doi:10.1038/srep26074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ufaz S, Galili G (2008) Improving the content of essential amino acids in crop plants: goals and opportunities. Plant Physiol 147:954–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umar KJ, Hassan LG, Usman H, Wasagu RSU (2013) Nutritional composition of the seeds of wild melon (Citrullus cirrhosis). Pak J Biol Sci 16:536

    Article  CAS  PubMed  Google Scholar 

  • Waller GR (1978) A chemical investigation of Aloe barbadensis Miller. Proc Okla Acad Sci 58:69–76

    CAS  Google Scholar 

  • Wang L, Xu R, Hu B, Li W, Sun Y, Tu Y, Zeng X (2010) Analysis of free amino acids in Chinese teas and flower of tea plant by high performance liquid chromatography combined with solid-phase extraction. Food Chem 123:1259–1266

    Article  CAS  Google Scholar 

  • Yang QQ, Zhang CQ, Chan ML, Zhao DS, Chen JZ, Wang Q, Li QF, Yu HX, Gu MH, Sun SS, Liu QQ (2016) Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance. J Exp Bot 14:4285–4296

    Article  Google Scholar 

  • Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P (2007) Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci 12:548–555

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research, College of Sciences Research Centre, King Saud University, Riyadh, Saudi Arabia for supporting the project. Vinod Kumar is thankful to the University Grants Commission, New Delhi for providing research fellowship for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renu Bhardwaj or Parvaiz Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: J. D. Wade.

V. Kumar and A. Sharma have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Sharma, A., Kaur, R. et al. Differential distribution of amino acids in plants. Amino Acids 49, 821–869 (2017). https://doi.org/10.1007/s00726-017-2401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2401-x

Keywords

Navigation