Skip to main content
Log in

Extrusion of Hulled Barley Affecting β-Glucan and Properties of Extrudates

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Grits from eight different hulled barley cultivars were subjected to extrusion cooking on a twin screw extruder, and the effect of extrusion variables (temperature and moisture) on β-glucan and physicochemical properties was evaluated. The highest bulk density was observed for extrudates extruded at 150 °C and 20% moisture (low temperature high moisture, LTHM) while the highest expansion was observed for the extrudates extruded at 150 °C and 15% moisture (low temperature low moisture). Extrusion reduced the lightness (L*) of the extrudates and the highest decrease observed for LTHM extrudates. Increasing the feed moisture decreased water solubility index (WSI) significantly while increasing the extrusion temperature significantly increased WSI. The high temperature high moisture (HTHM) extrudates exhibited the highest water absorption capacity. The total β-glucan content was not affected by extrusion cooking, but a significant increase in soluble β-glucan was observed with the highest in high temperature low moisture extrudates. The ratio of soluble to insoluble β-glucan varied from 0.7 to 1.5 in the control barley, but after extrusion cooking, the ratio was changed from 1.2 to 3.1. The β-glucan extractability increased by up to 8% after extrusion with extrudates from HTHM showing the highest extractability. The extent of starch gelatinization varied from 80% to 100% upon extrusion, and the highest was observed in HTHM extrudates. A significant decrease in the peak and final viscosity of the extrudates at all the extrusion conditions was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ainsworth, P., Ibanoglu, S., Plunkett, A., Ibanoglu, E., & Stojceska, V. (2007). Effect of brewers spent grain addition and screw speed on the selected physical and nutritional properties of an extruded snack. Journal of Food Engineering, 81, 702–709.

    Article  CAS  Google Scholar 

  • Al-Rabadi, G. J., Torley, P. J., Williams, B. A., Bryden, W. L., & Gidley, M. J. (2011). Particle size of milled barley and sorghum and physico-chemical properties of grain following extrusion. Journal of Food Engineering, 103, 464–472.

    Article  CAS  Google Scholar 

  • Altan, A., McCarthy, K. L., & Maskan, M. (2008). Extrusion cooking of barley flour and process parameter optimization by using response surface methodology. Journal of the Science of Food and Agriculture, 88, 1648–1659.

    Article  CAS  Google Scholar 

  • Altan, A., McCarthy, K. L., & Maskan, M. (2009). Effect of extrusion process on antioxidant activity, total phenolics and β-glucan content of extrudates developed from barley-fruit and vegetable by-products. International Journal of Food Science and Technology, 44, 1263–1271.

    Article  CAS  Google Scholar 

  • Ames, N., Rhymer, C., Rossnagel, B., Therrien, M., Ryland, D., Dua, S., & Ross, K. (2006). Utilization of diverse hulless barley properties to maximize food product quality. Cereal Foods World, 51, 23–38.

    Google Scholar 

  • Andersson, A. A. M., Armo, E., Grangeon, E., Fredriksson, H., Andersson, R., & Aman, P. (2004). Molecular weight and structure units of (1→3), (1→4)-β-glucans in dough and bread from hull-less barley milling factions. Journal of Cereal Science, 40, 195–204.

    Article  CAS  Google Scholar 

  • Anuonye, J. C., Badifu, G. I. O., Inyang, C. U., & Akpapunam, M. A. (2007). Effect of process variables on the amylose and pasting characteristics of acha/soybean extrudates using response surface methodology. American Journal of Food Technology, 2, 354–365.

    Article  CAS  Google Scholar 

  • Arhaliass, A., Legrand, J., Vauchel, P., Fodil-Pacha, F., Lamer, T., & Bouvier, J.-M. (2009). The effect of wheat and maize flours properties on the expansion mechanism during extrusion cooking. Food and Bioprocess Technology, 2, 186–193.

    Article  Google Scholar 

  • Baik, B. K., Powers, J., & Nguyen, L. T. (2004). Extrusion of regular and waxy barley flours for production of expanded cereals. Cereal Chemistry, 81, 94–99.

    Article  CAS  Google Scholar 

  • Bhatty, R. S. (1995). Laboratory and pilot plant extraction and purification of β-glucan from hulless barley and oat brans. Journal of Cereal Science, 22, 163–170.

    Article  CAS  Google Scholar 

  • Brennan, C. S., & Cleary, L. J. (2005). The potential use of cereal (1→3), (1→4)-β-D-glucans as functional food ingredients. Journal of Cereal Science, 42, 1–13.

    Article  CAS  Google Scholar 

  • Brennan, M. A., Monaro, J. A., & Brennan, C. S. (2008). Effect of inclusion of soluble and insoluble fibers into extruded breakfast cereal products made with reverse screw configuration. International Journal of Food Science and Technology, 43, 2278–2288.

    Article  CAS  Google Scholar 

  • Brennan, C., Brennan, M., Derbyshire, E., & Tiwari, B. K. (2011). Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends in Food Science & Technology, 22, 570–575.

    Article  CAS  Google Scholar 

  • Camire, M. E. (1998). Chemical changes during extrusion cooking: recent advances. In F. Shahidi, C.-T. Ho, & N. Van Chuyen (Eds.), Process-induced chemical changes in foods (pp. 109–122). New York: Plenum.

    Google Scholar 

  • Camire, M. E., & Flint, S. I. (1991). Processing effects on dietary fibre composition and hydration capacity in corn meal, oatmeal, and potato peels. Cereal Chemistry, 68, 645–647.

    Google Scholar 

  • Camire, M. E., & King, C. C. (1991). Protein and fiber supplementation effects on extruded cornmeal snack quality. Journal of Food Science, 56, 760–763.

    Article  CAS  Google Scholar 

  • Camire, M. E., Camire, A., & Krumhar, K. (1990). Chemical and nutritional changes in foods during extrusion. Critical Reviews in Food Science and Nutrition, 29, 35–57.

    Article  CAS  Google Scholar 

  • Caprez, A., Arrigoni, E., Amado, R., & Neukom, H. (1986). Influence of different types of thermal treatment on the chemical composition and physical properties of wheat bran. Journal of Cereal Science, 4, 233–239.

    Article  Google Scholar 

  • Carvalho, C. W. P., Takeiti, C. Y., Onwulata, C. I., & Pordesimo, L. O. (2010). Relative effect of particle size on the physical properties of corn meal extrudates: Effect of particle size on the extrusion of corn meal. Journal of Food Engineering, 98, 103–109.

    Article  CAS  Google Scholar 

  • Cespedes, M. A. L., Bustos, F. M., & Chang, Y. K. (2010). The effect of extruded orange pulp on enzymatic hydrolysis of starch and glucose retardation index. Food and Bioprocess Technology, 3, 684–692.

    Article  CAS  Google Scholar 

  • Chiu, H.-W., Peng, J.-C., Tsai, S.-J., & Lui, W.-B. (2011). Effect of extrusion processing on antioxidant activities of corn extrudates fortified with various Chinese yams. Food and Bioprocess Technology. doi:10.1007/s11947-011-0675-7.

  • Cleary, L. J., Andersson, R., & Brennan, C. S. (2007). The behavior and susceptibility to degradation of high and low molecular weight barley β-glucan in wheat bread during baking and in vitro digestion. Food Chemistry, 102, 889–897.

    Article  CAS  Google Scholar 

  • Ding, Q.-B., Ainsworth, P., Tucker, G., & Marson, H. (2005). The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. Journal of Food Engineering, 66, 283–289.

    Article  Google Scholar 

  • Ding, Q.-B., Ainsworth, P., Plunkett, A., Tucker, G., & Marson, H. (2006). The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks. Journal of Food Engineering, 73, 142–148.

    Article  Google Scholar 

  • Drago, S. R., Velasco-Gonzalez, O. H., Torres, R. L., Gonzalez, R. J., & Valencia, M. E. (2007). Effect of the extrusion on functional properties and mineral dialyzability from Phaseolus vulgaris bean flour. Plant Foods for Human Nutrition, 62, 43–48.

    Article  CAS  Google Scholar 

  • Duarte, G., Carvalho, C. W. P., & Ascheri, J. L. R. (2009). Effect of soybean hull, screw speed and temperature on expanded maize extrudates. Brazilian Journal of Food Technology, 12, 205–212.

    Article  Google Scholar 

  • Fadel, J. G., Newman, C. W., Newman, R. K., & Graham, H. (1988). Effects of extrusion cooking of barley on ileal and fecal digestibilities of dietary components in pigs. Canadian Journal of Animal Science, 68, 891–897.

    Article  Google Scholar 

  • Gaosong, J., & Vasanthan, T. (2000). Effect of extrusion cooking on the primary structure and water solubility of β-glucans from regular and waxy barley. Cereal Chemistry, 77, 396–400.

    Article  Google Scholar 

  • Gill, S., Vasanthan, T., Ooarikul, B., & Rossnagel, B. (2002). Wheat bread quality as influenced by the substitution of waxy and regular barley flours in their native and extruded forms. Journal of Cereal Science, 36, 219–237.

    Article  CAS  Google Scholar 

  • Gomez, M. H., & Aguilera, J. M. (1983). Changes in the starch fraction during extrusion-cooking of corn. Journal of Food Science, 48, 378–381.

    Article  Google Scholar 

  • Gomez, C., Navarro, A., Manzanares, A., Horta, A., & Carbonell, J. V. (1997). Physical and structural properties of barley (1→3), (1→4)-β-D-glucans. II. Viscosity, chain stiffness and macromolecular dimensions. Carbohydrate Polymer, 32, 17–22.

    Article  CAS  Google Scholar 

  • Guha, M., & Ali, S. Z. (2011). Changes in rheological properties of rice flour during extrusion cooking. Journal of Texture Studies. doi:10.1111/j.1745-4603.2011.00306.x.

  • Guha, M., Ali, S. Z., & Bhattacharya, S. (1998). Effect of barrel temperature and screw speed on rapid viscoanalyser pasting behaviour of rice extrudate. International Journal of Food Science and Technology, 33, 259–266.

    Article  CAS  Google Scholar 

  • Gujral, H. S., & Gaur, S. (2005). Instrumental texture of chapati as affected by barley flour, glycerol monostearate and sodium chloride. International Journal of Food Properties, 8, 1–9.

    Article  Google Scholar 

  • Gujral, H. S., Sharma, P., Kumar, A., & Singh, B. (2010). Total phenolic content and antioxidant activity of extruded brown rice. International Journal of Food Properties. doi:10:1080/10942912.2010.483617.

  • Gujral, H. S., Sharma, P., & Singh, R. (2011). Effect of sand roasting on beta glucan extractability, physicochemical and antioxidant properties of oats. LWT- Food Science and Technology, 44, 2223–2230.

    Article  CAS  Google Scholar 

  • Gujska, E., & Khan, K. (1990). Effect of temperature on properties of extrudates from high starch fraction of navy, pinto and garbanzo beans. Journal of Food Science, 55, 466–469.

    Article  CAS  Google Scholar 

  • Gujska, E., & Khan, K. (1991). Functional properties of extrudates from high starch fractions of navy and pinto beans and corn meal blended with legume high protein fractions. Journal of Food Science, 56, 431–435.

    Article  CAS  Google Scholar 

  • Hagenimana, A., Ding, X., & Fang, T. (2006). Evaluation of rice flour modified by extrusion cooking. Journal of Cereal Science, 43, 38–46.

    Article  CAS  Google Scholar 

  • Huth, M., Dongowski, G., Gebhard, E., & Flamme, W. (2000). Functional properties of dietary fiber enriched extruded from barley. Journal of Cereal Science, 32, 115–128.

    Article  CAS  Google Scholar 

  • Izydorczyk, M. S., Storsley, J., Labossiere, D., MacGregor, A. W., & Rossnagel, B. G. (2000). Variation in total and soluble b-glucan content in hulless barley: Effects of thermal, physical, and enzymatic treatments. Journal of Agricultural and Food Chemistry, 48, 982–989.

    Article  CAS  Google Scholar 

  • Jenkins, A. L., Jenkins, D. J. A., Zdravkovic, U., Wursch, P., & Vuksan, V. (2002). Depression of the glycaemic index by high levels of beta-glucan fiber in two functional foods tested in type 2 diabetes. European Journal of Clinical Nutrition, 56, 622–628.

    Article  CAS  Google Scholar 

  • Jing, H., Yap, M., Wong, P. Y. Y., & Kitts, D. D. (2010). Comparison of physicochemical and antioxidant properties of egg-white proteins and fructose and inulin Maillard reaction products. Food and Bioprocess Technology. doi:10.1007/s11947-009-0279-7.

  • Johansson, L., Tuomainen, P., Rita, H., & Virkki, L. (2007). Effect of processing on the extractability of oat β-glucan. Food Chemistry, 105, 1439–1445.

    Article  CAS  Google Scholar 

  • Jones, D., Chinnaswamy, R., Tan, Y., & Hanna, M. (2000). Physicochemical properties of ready-to-eat breakfast cereals. Cereal Food World, 45, 164–168.

    CAS  Google Scholar 

  • Kadan, R. S., Bryant, R. J., & Pepperman, A. B. (2003). Functional properties of extruded rice flours. Journal of Food Science, 68, 1669–1672.

    Article  CAS  Google Scholar 

  • Koksel, H., Ryu, G. H., Basman, A., Demiralp, H., & Ng, P. K. W. (2004). Effects of extrusion variables on the properties of waxy hulless barley extrudates. Nahrung/Food, 48, 19–24.

    Article  Google Scholar 

  • Lai, L. S., & Kokini, J. L. (1991). Physicochemical changes and rheological properties of starch during extrusion. Biotechnology Progress, 7, 251–266.

    Article  CAS  Google Scholar 

  • Launay, B., & Lisch, J. M. (1983). Twin screw extrusion cooking of starches, behavior of starch pastes, expansion and mechanical properties of extrudates. Journal of Food Engineering, 2, 259–280.

    Article  CAS  Google Scholar 

  • Lazaridou, A., Biliaderis, C. G., Micha-Screttas, M., & Steele, B. R. (2004). A comparative study on structure-function relations of mixed-linkage (1–3), (1–4) linear β-D-glucans. Food Hydrocolloids, 18, 837–855.

    Article  CAS  Google Scholar 

  • Lazou, A., & Krokida, M. (2010). Functional properties of corn and corn–lentil extrudates. Food Research International, 43, 609–616.

    Article  CAS  Google Scholar 

  • Lee, Y., Lim, K. I., Lim, J. K., & Lim, S. T. (2000). Effects of gelatinization and moisture content of extruded starch pellets on morphology and physical properties of microwave-expanded products. Cereal Chemistry, 77, 769–773.

    Article  CAS  Google Scholar 

  • Lee, K.-M., Bean, S. R., Alavi, S., Herrman, T. J., & Waniska, R. D. (2006). Physical and biochemical properties of maize hardness and extrudates of selected hybrids. Journal of Agricultural and Food Chemistry, 54, 4260–4269.

    Article  CAS  Google Scholar 

  • Li, M., & Lee, T. C. (1996). Effect of cysteine on the functional properties and microstructures of wheat flour extrudates. Journal of Agriculture and Food Chemistry, 44, 1871–1880.

    Article  CAS  Google Scholar 

  • Lin, M. J. Y., Humbert, E. S., & Sosulski, F. W. (1974). Certain functional properties of sunflower meal products. Journal of Food Science, 39, 368–370.

    Article  Google Scholar 

  • Liu, Q., Charlet, G., Yelle, S., & Arul, J. (2002). Phase transition in potato starch–water system. I. Starch gelatinisation at high moisture level. Food Research International, 35, 397–407.

    Article  CAS  Google Scholar 

  • Liu, P., Huang, M., Song, S., Hayat, K., Zhang, X., Xia, S., & Jia, C. (2010). Sensory characteristics and antioxidant activities of Maillard reaction products from soy protein hydrolysates with different molecular weight distribution. Food and Bioprocess Technology. doi:10.1007/s11947-010-0440-3.

  • Maaruf, A. G., Man, Y. B. C., Asbi, B. A., Junainah, A. H., & Kennedy, J. F. (2001). Effect of water content on the gelatinization temperature of sago starch. Carbohydrate Polymers, 46, 331–337.

    Article  CAS  Google Scholar 

  • Manzocco, L. S., Calligaris, S., Mastrocola, D., Nicoli, M. C., & Lerici, C. R. (2000). Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science & Technology, 11, 340–346.

    Article  CAS  Google Scholar 

  • McCleary, B. V., & Glennie, H. M. (1985). Enzymatic quantification of (1→3), (1→4)-β-glucan-D-glucan in barley and malt. Journal of the Institute of Brewing, 91, 285–295.

    Article  Google Scholar 

  • Mendonca, S., Grossmann, M. V. E., & Verhe, R. (2000). Corn bran as a fiber source in expanded snacks. Lebensmittel-Wissenschaft und Technologie, 33, 2–8.

    Article  CAS  Google Scholar 

  • Nwabueze, T. U., & Iwe, M. O. (2009). Residence time distribution (RTD) in a single screw extrusion of African breadfruit mixtures. Food and Bioprocess Technology, 3, 135–145.

    Article  Google Scholar 

  • Osman, M. G., Sahai, D., & Jakson, D. S. (2000). Oil absorption characteristics of a multigrain extrudate during frying: Effect of extrusion temperature and screw speed. Cereal Chemistry, 77, 101–104.

    Article  CAS  Google Scholar 

  • Ragaee, S., & Abdel-Aal, E. S. M. (2006). Pasting properties of starch and protein in selected cereals and quality of their food products. Food Chemistry, 95, 9–18.

    Article  CAS  Google Scholar 

  • Rayas-Duarte, P., Majewska, K., & Doetkott, C. (1998). Effect of extrusion process parameters on the quality of buckwheat flour mixes. Cereal Chemistry, 75, 338–345.

    Article  CAS  Google Scholar 

  • Repo-Carrasco-Valencia, R., Pena, J., Kallio, H., & Salminen, S. (2009). Dietary fiber and other functional component in two varieties of crude and extruded kiwicha (Amaranthus caudatus). Journal of Cereal Science, 49, 219–224.

    Article  CAS  Google Scholar 

  • Robertson, J. A., Majsak-Newman, G., Ring, S. G., & Selvendran, R. R. (1997). Solubilisation of mixed linkage (1→3), (1→4)-β-D-glucans from barley: effects of cooking and digestion. Journal of Cereal Science, 25, 275–283.

    Article  CAS  Google Scholar 

  • Rufian-Henares, J. A., & Delgado-Andrade, C. (2009). Effect of digestive process on Maillard reaction indexes and antioxidant properties of breakfast cereals. Food Research International, 42, 394–400.

    Article  CAS  Google Scholar 

  • Santillan-Moreno, A., Martinez-Bustos, F., Castano-Tostado, E., & Amaya-Llano, S. L. (2011). Physicochemical characterization of extruded blends of corn starch–whey protein concentrate–Agave tequilana fiber. Food and Bioprocess Technology, 4, 797–808.

    Article  CAS  Google Scholar 

  • Shahidi, F. (2009). Nutraceuticals and functional foods: Whole versus processed foods—review. Trends in Food Science & Technology, 20, 376–387.

    Article  CAS  Google Scholar 

  • Sharma, P., & Gujral, H. S. (2010a). Milling behavior of hulled barley and its thermal and pasting properties. Journal of Food Engineering, 97, 329–334.

    Article  CAS  Google Scholar 

  • Sharma, P., & Gujral, H. S. (2010b). Antioxidant and polyphenols oxidase activity of germinated barley and its milling fractions. Food Chemistry, 120, 673–678.

    Article  CAS  Google Scholar 

  • Sharma, P., & Gujral, H. S. (2011). Effect of sand roasting and microwave cooking on antioxidant activity of barley. Food Research International, 44, 235–240.

    Article  CAS  Google Scholar 

  • Sharma, P., Gujral, H. S., & Rosell, C. M. (2011). Effects of roasting on barley β-glucan, thermal, textural and pasting properties. Journal of Cereal Science, 53, 25–30.

    Article  CAS  Google Scholar 

  • Sharma, P., Gujral, H. S., & Singh, B. (2012). Antioxidant activity of barley as affected by extrusion cooking. Food Chemistry, 131, 1406–1413.

    Article  CAS  Google Scholar 

  • Shirani, G., & Ganesharanee, R. (2009). Extruded products with fenugreek (Trigonella foenum-graecium) chick pea and rice: Physical properties, sensory acceptability and glycemic index. Journal of Food Engineering, 90, 45–52.

    Article  Google Scholar 

  • Siljestrom, M., Westerlund, E., Bjorck, I., Holm, J., Asp, N.-G., & Theander, O. (1986). The effects of various thermal processes on dietary fiber and starch content of whole grain wheat and white flour. Journal of Cereal Science, 4, 315–323.

    Article  Google Scholar 

  • Singh, S., Gamlath, S., & Wakeling, L. (2007). Nutritional aspects of food extrusion: A review. International Journal of Food Science and Technology, 42, 916–929.

    Article  CAS  Google Scholar 

  • Sobota, A., Sykut-Domanska, E., & Rzedzicki, Z. (2010). Effect of extrusion-cooking process on the chemical composition of corn–wheat extrudates, with particular emphasis on dietary fiber fractions. Polish Journal of Food and Nutrition Sciences, 60, 251–259.

    CAS  Google Scholar 

  • Sompong, R., Siebenhandl-Ehn, S., Berghofer, E., & Schoenlechner, R. (2011). Extrusion cooking properties of white and colored rice varieties with different amylose content. Starch-Starke, 63, 55–63.

    Article  CAS  Google Scholar 

  • Stojceska, V., Ainsworth, P., Plunkett, A., & Ibanoglu, S. (2008). The recycling of brewer’s processing by-product into ready-to-eat snacks using extrusion technology. Journal of Cereal Science, 47, 469–479.

    Article  CAS  Google Scholar 

  • Stojceska, V., Ainsworth, P., Plunkett, A., & Ibanoglu, S. (2009). The effect of extrusion cooking using different water feed rates on the quality of ready-to-eat snacks made from food by-products. Food Chemistry, 114, 226–232.

    Article  CAS  Google Scholar 

  • Stojceska, V., Ainsworth, P., Plunkett, A., & Ibanoglu, S. (2010). The advantage of using extrusion processing for increasing dietary fiber level in gluten-free products. Food Chemistry, 121, 156–164.

    Article  CAS  Google Scholar 

  • Sun, L. P., & Zhuang, Y. L. (2010). Characterization of the Maillard reaction of enzyme-hydrolyzed wheat protein producing meaty aromas. Food and Bioprocess Technology. doi:10.1007/s11947-010-0406-5.

  • Tan, I., Wee, C. C., Sopade, P. A., & Halley, P. J. (2004). Investigation of the starch gelatinization phenomena in water–glycerol systems: Application of modulated temperature differential scanning calorimetry. Carbohydrate Polymers, 58, 191–204.

    Article  CAS  Google Scholar 

  • Thymi, S., Krokida, M. K., Pappa, A., & Maroulis, Z. B. (2005). Structural properties of extruded corn starch. Journal of Food Engineering, 68, 519–526.

    Article  Google Scholar 

  • Tiwari, U., & Cummins, E. (2009). Factors influencing β-glucan levels and molecular weight in cereal-based products. Cereal Chemistry, 86, 290–301.

    Article  CAS  Google Scholar 

  • Van den Einde, R. M., Bolsius, A., van Soest, J. J. G., Janssen, L. P. B. M., Van der Goot, A. J., & Boom, R. M. (2004). The effect of thermo-mechanical treatment on starch breakdown and the consequences for process design. Carbohydrate Polymers, 55, 57–63.

    Article  Google Scholar 

  • Varo, P., Laine, R., & Koiivistoinen, P. (1983). Effect of heat treatment on dietary fiber: Interlaboratory study. Journal of the Association of Official Analytical Chemists, 66, 933–938.

    CAS  Google Scholar 

  • Vasanthan, T., Yeung, J., & Hoover, R. (2001). Dextrinization of starch in barley flours with thermostable alpha-amylase by extrusion cooking. Starch-Starke, 53, 616–622.

    Article  CAS  Google Scholar 

  • Vasanthan, T., Gaosong, J., Yeung, J., & Li, J. (2002). Dietary fiber profile of barley flour as affected by extrusion cooking. Food Chemistry, 77, 35–40.

    Article  CAS  Google Scholar 

  • Viscidi, K. A., Dougherty, M. P., Briggs, J., & Camire, M. E. (2004). Complex phenolic compounds reduce lipid oxidation in extruded oat cereals. LWT- Food Science and Technology, 37, 789–796.

    Article  CAS  Google Scholar 

  • Vranjes, M. V., & Wenk, C. (1995). The influence of extruded vs untreated barley in feed with and without dietary enzyme supplement on broiler performance. Animal Feed Science and Technology, 54, 21–32.

    Article  Google Scholar 

  • Wang, W. M., Klopfenstein, C. F., & Ponte, J. G. (1993). Effects of twin screw extrusion on the physical properties of dietary fiber and other components of while wheat and wheat bran on the baking quality of the wheat bran. Cereal Chemistry, 70, 707–711.

    Google Scholar 

  • Wood, P. J. (2002). Relationships between solution properties of cereal β-glucans and physiological effects—a review. Trends in Food Science & Technology, 13, 313–320.

    Google Scholar 

  • Wood, P. J., Weisz, J., Fedec, P., & Burrows, V. D. (1989). Large-scale preparation and properties of oat fractions enriched in (1→3), (1→4) β-D-glucan. Cereal Chemistry, 66, 97–103.

    CAS  Google Scholar 

  • Woodward, J. R., Fincher, G. B., & Stone, B. A. (1983). Water-soluble (1→3), (1→4)-β-D-glucans from barley (Hordeum vulgare) endosperm. II. Fine structure. Carbohydrate Polymers, 3, 207–225.

    Article  CAS  Google Scholar 

  • Yao, N., Jannink, J. L., Alavi, S., & White, P. J. (2006). Physical and sensory characteristics of extruded products made from two oat lines with different β-glucan concentrations. Cereal Chemistry, 83, 692–699.

    Article  CAS  Google Scholar 

  • Yao, N., White, P. J., & Alavi, S. (2011). Impact of β-glucan and other oat flour components on physico-chemical and sensory properties of extruded oat cereals. International Journal of Food Science and Technology, 46, 651–660.

    Article  CAS  Google Scholar 

  • Yu, L., Ramaswamy, H. S., & Boye, J. (2009). Twin-screw extrusion of corn flour and soy protein isolate (SPI) blends: A response surface analysis. Food and Bioprocess Technology. doi:10.1007/s11947-009-0294-8.

  • Zhang, M., Bai, X., & Zhang, Z. (2011). Extrusion process improves the functionality of soluble dietary fiber in oat bran. Journal of Cereal Science, 54, 98–103.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Megazyme International Ireland Ltd. for providing the β-assay kit. We are also thankful to the Council of Scientific and Industrial Research, New Delhi for providing the Senior Research Fellowship to Mr. Paras Sharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hardeep Singh Gujral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, P., Gujral, H.S. Extrusion of Hulled Barley Affecting β-Glucan and Properties of Extrudates. Food Bioprocess Technol 6, 1374–1389 (2013). https://doi.org/10.1007/s11947-011-0777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0777-2

Keywords

Navigation