Skip to main content
Log in

Blood glucose lowering, glycaemic index, carbohydrate-hydrolysing enzyme inhibitory activities of potential functional food from plantain, soy-cake, rice-bran and oat-bran flour blends

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The samples, PLT (100% Plantain), PSC (Plantain 70%, Soycake 30%), PSR (Plantain 65%, Soycake 30%, Rice bran 5%), PSO (Plantain 65%, Soycake 30%, Oat bran 5%) and PSRO (Plantain 60%, Soycake 30%, Rice bran 5%, Oat bran 5%), and CNL (Cerolina—a wheat and soybean blend) were evaluated for glycaemic index (GI)/load (GL), and in vivo antidiabetic potentials. The GI (30.48–35.33) and GL (18.79–21.98) of PSR, PSO and PSRO were lower than PLT, CNL and recommended values for low GI (= < 55%) and GL (= 20%). The PSRO sample (82.72%) had the highest blood glucose reducing activity compared to other blends, PLT and Cerolina. This study established that PSRO (60% plantain, 30% soycake, 5% rice bran, 5% oat bran) exhibited low glycaemic index, glycaemic load, and high blood glucose lowering potential. Hence, PSRO may be suitable as a functional food for the prevention and treatment of Type-2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are available on request from authors’.

References

  1. S. Wild, G. Roglic, A. Green, R. Sicree, H. King, Diabetes Care (2004). https://doi.org/10.2337/diacare.27.5.1047

    Article  PubMed  Google Scholar 

  2. F. Wenjun, Cardiovasc. Endocrinol. (2017). https://doi.org/10.1097/XCE.0000000000000116

    Article  Google Scholar 

  3. S.A. Adefegha, O. Ganiyu, O.M. Adefegha, A.A. Boligon, M.L. Athayde, J. Sci. Food Agric. (2015). https://doi.org/10.1002/jsfa.6617

    Article  Google Scholar 

  4. J.A. Hawley, M.J. Gibala, Diabetologia (2012). https://doi.org/10.1007/s00125-009-1425-5

    Article  PubMed  Google Scholar 

  5. B.J. Goldstein, Clinical translation of ‘a diabetes outcome progression trial’: adopt appropriate combination oral therapies in type 2 diabetes. J. Clin. Endocrinol. Metab. (2007). https://doi.org/10.1210/jc.2006-2858

    Article  PubMed  PubMed Central  Google Scholar 

  6. S. Prasad, M. Krishnadas, K. McConkey, A. Datta, J. Appl. Ecol. (2014). https://doi.org/10.1111/1365-2664.12170

    Article  Google Scholar 

  7. S.E. Inzucchi, R.M. Bergenstal, J.B. Buse, M. Diamant, E. Ferrannini, M. Nauck, A.L. Peters, A. Tsapas, R. Wender, D.R. Matthews, Diabetes Care (2012). https://doi.org/10.2337/dc12-0413

    Article  PubMed  PubMed Central  Google Scholar 

  8. T.C. Odom, E.A. Udensi, C.A. Ogbuji, EJBMSR 1, 1 (2013)

    Google Scholar 

  9. O. Famakin, A. Fatoyinbo, O.S. Ijarotimi, A.A. Badejo, T.N. Fagbemi, J. Food Sci. Technol. (2016). https://doi.org/10.1007/s13197-016-2357-y

    Article  PubMed  PubMed Central  Google Scholar 

  10. F.D. Odebode, O.T. Ekeleme, O.S. Ijarotimi, S.A. Malomo, A.O. Idowu, A.A. Badejo, I.A. Adebayo, T.N. Fagbemi, J. Food Biochem. (2017). https://doi.org/10.1111/jfbc.12447

    Article  Google Scholar 

  11. T.D. Oluwajuyitan, O.S. Ijarotimi, Heliyon 5, 4 (2019). https://doi.org/10.1016/j.heliyon.2019.e01504

    Article  Google Scholar 

  12. C.P. Randy, A.K. Kepler, J. Daniells, S.C. Nelson, Species profile for pacific island agroforestry (2007). www.traditionaltree.org. Accessed 5 July 2019

  13. T. Tribess, P.J. Hernandez-Uribe, G. Mendez-Montealvo, C.C. Tadini, LWT-Food Sci. Technol. (2009). https://doi.org/10.1016/j.lwt.2008.12.017

    Article  Google Scholar 

  14. J.A. Ojewole, C.O. Adewunmi, Clin. Pharmacol. (2003). https://doi.org/10.1358/mf.2003.25.6.769651

    Article  Google Scholar 

  15. P.I. Akubor, C. Ishiwu, Int. Agric. Policy Res. 1, 87 (2013)

    Google Scholar 

  16. L.X. He, J. Zhao, Y.S. Huang, Y. Li, Food Funct. 7, 1413 (2016)

    Article  CAS  Google Scholar 

  17. M. Hegsted, W.M. Windhauser, S.B. Leaster, S.K. Morris, FASEB 4, A368 (1990)

    Google Scholar 

  18. R.K. Newman, A.A. Betschart, C.W. Newman, P.J. Hofer, Plant Food Hum. Nutr. (1992). https://doi.org/10.1007/BF02196071

    Article  Google Scholar 

  19. A. Singh, R. Dubey, R.T.K. Paliwal, G. Saraogi, A.K. Shinghai, Int. J. Pharm. Pharm. Sci. 4, 39 (2012)

    CAS  Google Scholar 

  20. H.D. Mepba, L. Eboh, S.U. Nwajigwa, Afr. J. Food Nutr. Sci. 7, 1 (2007)

    Google Scholar 

  21. AOAC, Official Methods of Analysis, 19th edn. (Association of Official Analytical Chemist International, Rockville, 2012).

    Google Scholar 

  22. E. Apostolidis, Y.I. Kwon, K. Shetty, Innov. Food Sci. Emerg. Technol. (2007). https://doi.org/10.1016/j.ifset.2006.06.001

    Article  Google Scholar 

  23. V. Worthington, Alpha amylase, in Worthington enzyme manual. (Worthington Biochemical Corporation, Lakewood, 1993)

    Google Scholar 

  24. CCAC, Canadian council on animal care, in Guide to the care and use of experimental animals, 2nd edn., ed. by E.D. Olfert, B.M. Cross, A.A. McWilliam (CCAC, Simcoe, 1993)

    Google Scholar 

  25. B. Lawal, O.K. Shittu, A.N. Abubakar, G.M. Haruna, S. Sani, P.C. Ossai, J. Coast. Life Med. (2015). https://doi.org/10.12980/JCLM.3.2015J5-89

    Article  Google Scholar 

  26. T.M.S. Wolever, D.J.A. Jenkins, A.L. Jenkins, R.G. Josse, Am. J. Clin. Nutr. 54, 846 (1991)

    Article  CAS  Google Scholar 

  27. J. Salmerón, J.E. Manson, M.J. Stampfer, G.A. Colditz, A.L. Wing, W.C. Willett, Joint Am. Med. Assoc. (1997). https://doi.org/10.1001/jama.1997.03540300040031

    Article  Google Scholar 

  28. A.C. Dona, P. Guilhem, G.G. Robert, W.K. Philip, Carbohydr. Polym. (2010). https://doi.org/10.1016/j.carbpol.2010.01.002

    Article  Google Scholar 

  29. H. Abu, F.A.R. Zulfiker, R. Mahbubur, M.U. Obayed, H. Kaiser, R.K. Mahbubur, R. Sohel, Int. J. Pharmtech Res. 2, 2527 (2010)

    Google Scholar 

  30. P. Ramdas, S. Balakrishnan, Avicenna J. Phytomed. 2, 233 (2012)

    Google Scholar 

  31. B.W. Parks, E. Nam, E. Org, E. Kostem, F. Norheim, S.T. Hui, C. Pan, M. Civelek, C.D. Rau, B.J. Bennett, M. Mehrabian, L.K. Ursell, A. He, L.W. Castellani, B. Zinker, M. Kirby, T.A. Drake, C.A. Drevon, R. Knight, P. Gargalovic, T. Kirchgessner, E. Eskin, A.J. Lusis, Cell Metab. (2013). https://doi.org/10.1016/j.cmet.2012.12.007

    Article  PubMed  PubMed Central  Google Scholar 

  32. A. Yalta, A. Talha, Comput. Stat. Data Anal. (2008). https://doi.org/10.1016/j.csda.2008.03.005

    Article  Google Scholar 

  33. NIS, Nigerian Industrial Standard. Standard for edible cassava flour 344, 12 (2004)

  34. FAO, Food and Agriculture Organisation of the United Nations (2003). http://www.fao.org/ag/aga/agap/frg/AFRIS/DATA/118.htm

  35. A.M. Odenigbo, V.U. Asumugha, S. Ubbor, C. Nwauzor, A.C. Otuonye, B.I. Offia-Olua, I.L. Princewill-Ogbunna, O.C. Nzeagwu, H.N. HenryUneze, J.U. Anyika, P. Ukaegbu, A.S. Umeh, G.O. Anozie, Br. J. Appl. Sci. Technol. 3, 4 (2013)

    Article  Google Scholar 

  36. W. Hall, D. Millward, S. Lon, L.M. Morgan, Br. J. Nutr. (2003). https://doi.org/10.1079/BJN2002760

    Article  PubMed  Google Scholar 

  37. M. Markova, S. Hornemann, S. Sucher, O. Pivovarova, A. Pfeiffer, Abstract #701. (Presented at the 49th Annual Meeting of the European Association for the Study of Diabetes, 2015)

  38. J. Lunn, J.L. Buttriss, Nutr. Bull. (2007). https://doi.org/10.1111/j.1467-3010.2007.00616.x

    Article  Google Scholar 

  39. M. Elleuch, D. Bedigian, R. Olivier, B. Souhail, B. Christophe, A. Hamadi, Food Chem. (2011). https://doi.org/10.1016/j.foodchem.2010.06.077

    Article  Google Scholar 

  40. R.E. Post, A.G. Mainous III., D.E. King, K.N. Simpson, J. Am. Board Fam. Med. (2012). https://doi.org/10.3122/jabfm.2012.01.110148

    Article  PubMed  Google Scholar 

  41. Y.I. Kwon, E. Apostolidis, Y.C. Kim, K. Shetty, J. Med. Food. (2007). https://doi.org/10.1089/jmf.2006.234

    Article  PubMed  Google Scholar 

  42. M.T. Ademosun, O.S. Omoba, A.I. Olagunju, J. Food Biochem. (2020). https://doi.org/10.1111/jfbc.13324

    Article  PubMed  Google Scholar 

  43. S.W. Rizkalla, L. Taghrid, M. Laromiguiere, Diabetes Care (2004). https://doi.org/10.2337/diacare.27.8.1866

    Article  PubMed  Google Scholar 

  44. I.J. Warren, M. Burnette, C.S. South, V.I. Patten, Int. J. Law Psychiat. (2003). https://doi.org/10.1016/S0160-2527(03)00034-7

    Article  Google Scholar 

  45. J. McMillan-Price, P. Petocz, F. Atkinson, Arch. Intern. Med. (2006). https://doi.org/10.1001/archinte.166.14.1466

    Article  PubMed  Google Scholar 

  46. F.S. Atkinson, K. Foster-Powell, J.C. Brand-Miller, Diabetes Care (2008). https://doi.org/10.2337/dc08-1239

    Article  PubMed  PubMed Central  Google Scholar 

  47. E.W. Menezes, M.C. Dan, G.H. Cardenette, I. Góni, L.A. Bello-Perez, F.M. Lajolo, Plant Foods Hum. Nutr. (2010). https://doi.org/10.1007/s11130-010-0190-4

    Article  PubMed  Google Scholar 

  48. K. Kobayashi, Y. Saito, I. Nakazawa, F. Yoshizaki, Biol. Pharm. Bull. (2000). https://doi.org/10.1248/bpb.23.1250

    Article  PubMed  Google Scholar 

  49. L. Heilbronn, S.S. Smith, E. Ravussin, Obes. Rev. (2004). https://doi.org/10.1038/sj.ijo.0802853

    Article  Google Scholar 

  50. S.A. Shodehinde, G. Oboh, Asian Pac. J. Trop. Biomed. (2013). https://doi.org/10.1016/S2221-1691(13)60095-7

    Article  PubMed  PubMed Central  Google Scholar 

  51. C.O. Eleazu, P.N. Okafor, Int. J. Med. Biomed. Res. (2015). https://doi.org/10.14194/ijmbr.1311

    Article  Google Scholar 

  52. M. Iroaganachi, C.O. Eleazu, P.N. Okafor, N. Nwaohu, Open. Biochem. J. (2015). https://doi.org/10.2174/1874091X01509010001

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Richardson Milling Limited, Portage La Prairie, Manitoba (MB), Canada, for the donation of oat-bran flour sample for the research. Also, to appreciate the Tertiary Education Trust Fund (TETFUND) of the Federal Government of Nigeria for granting Prof. Tayo Nathaniel Fagbemi, of Food Science and Technology Department and his group, Federal University of Technology Akure, Nigeria the research fund and support to carry out this research (VCPU/TETFund/155C).

Funding

Research funds was received from Tertiary Education Trust Fund (TETFUND) of the Federal Government of Nigeria.

Author information

Authors and Affiliations

Authors

Contributions

OSI & TNF designed the research; while implementation of the research, OSI and TDO did data analyses and manuscript preparation.

Corresponding author

Correspondence to Timilehin David Oluwajuyitan.

Ethics declarations

Conflict of interest

The authors declared that there were no conflicts of interest for the study.

Consent for publication

All authors consent to the publication of this research.

Ethical approval

The experiment on the animals were conducted in accordance with the laws and regulations as regards animal use and was approved by the Ethical Committee of School of Agriculture and Agricultural Technology, Federal University of Technology Akure, Nigeria (approval number FUTA/SAAT/2018/021).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oluwajuyitan, T.D., Ijarotimi, O.S., Fagbemi, T.N. et al. Blood glucose lowering, glycaemic index, carbohydrate-hydrolysing enzyme inhibitory activities of potential functional food from plantain, soy-cake, rice-bran and oat-bran flour blends. Food Measure 15, 3761–3769 (2021). https://doi.org/10.1007/s11694-021-00954-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00954-2

Keywords

Navigation