Skip to main content

Advertisement

Log in

Effect of Tempering and Baking on the Charpy Impact Energy of Hydrogen-Charged 4340 Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Tempered AISI 4340 steel was hydrogen charged and tested for impact energy. It was found that samples tempered above 468 °C (875 °F) and subjected to hydrogen charging exhibited lower impact energy values when compared to uncharged samples. No significant difference between charged and uncharged samples tempered below 468 °C (875 °F) was observed. Neither exposure nor bake time had any significant effect on impact energy within the tested ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. ASM Handbook Committee, Metals Handbook. Properties and Selection: Irons and Steels, Vol 1, 9th ed., American Society of Metals, Materials Park, OH, 1978

    Google Scholar 

  2. MatWeb.com, 4340 Steel Material Properties, http://www.matweb.com, 2010

  3. L.G. Nash, H. Choo, P. Nash, L. Luc Daemen, and A.M. Mark Bourke, Lattice Dilation in a Hydrogen Charged Steel, International Centre for Diffraction Data,Advances in X-ray Analysis, Springer, New York, 2003, Vol 46, p 238–239

  4. J.M. Tartaglia, K.A. Lazzari, G.P. Hui, and K.L. Hayrynen, A Comparison of Mechanical Properties and Hydrogen Embrittlement Resistance of Austempered vs Quenched and Tempered 4340 Steel, J. Metall. Mater. Trans. A, 2008, 39, p 559–576

    Article  Google Scholar 

  5. H. Uyama, M. Nakashima, K. Morishige, Y. Mine, and Y. Murakami, Effects of Hydrogen Charge on Microscopic Fatigue Behavior of Annealed Carbon Steels, J. Fatigue Eng. Mater. Struct., 2006, 29, p 1066–1074

    Article  Google Scholar 

  6. I.O. Shim and J.G. Bryne, Microstructural Structural Response of 4340 Steel to Hydrogen Charging, J. Eng. Mater., 1990, 12, p 235–244

    Article  Google Scholar 

  7. I.A. Barnoush, Dr. Hydrogen Embrittlement, http://www.uni-saarland.de/fak8/wwm/research/phd_barnoush/hydrogen.pdf, N.p., Dec 1, 2011, Web Feb 2, 2014, p 13–19

  8. N.C. Uwakweh, C. Oswald, A. Samuel, S. Vinod, Hydrogen Charging of AISI-321 Austenitic Stainless Steel by Cathodic Polarization. Tri-Service Corrosion Conference, 2005, p 1–16

  9. H. Uyama, M. Nakashima, K. Morishige, Y. Mine, and Y. Murakami, Effects of Hydrogen Charge on Microscopic Fatigue Behavior of Annealed Carbon Steels, Fatigue Fract. Eng. Mater. Struct., 2006, 29, p 1066–1070

    Article  Google Scholar 

  10. H. Luo, C.F. Dong, Z.Y. Liu, M.T.J. Maha, and X.G. Li, Characterization of Hydrogen Charging of 2205 Duplex Stainless Steel and its Correlation with Hydrogen-Induced Cracking, Mater. Corros., 2013, 64, p 26–29

    Article  Google Scholar 

  11. A. Valiente, J. Toribio, R. Cortes, and L. Caballero, Tensile Failure of Stainless-Steel Notched Bars Under Hydrogen Charging, J. Eng. Mater. Technol., 1996, 118, p 118–191

    Article  Google Scholar 

  12. R. Fratesi and G. Roventi, Hydrogen-Inclusion Interaction in Tempered Martensite Embrittled SAE 4340 Steels, Mater. Sci. Eng.-Struct. Mater. Prop. Microstruct. Process., 1989, 119, p 17–22

    Article  Google Scholar 

  13. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 4th ed., Wiley, Canada, 1996, p 485–514

    Google Scholar 

  14. R.P. Gangloff, Hydrogen Assisted Cracking of High Strength Alloys. Comprehensive Structural Integrity, Vol 6, Elsevier, New York, 2003, p 1–7

    Google Scholar 

  15. ASTM F326, Standard Test Method for Electronic Measurement for Hydrogen Embrittlement From Cadmium Electroplating Processes, ASTM F32696 (2012) Standard Test Method for Electronic Measurement for Hydrogen Embrittlement From Cadmium Electroplating Processes, 2012, N.p., n.d. Web Mar 2, 2014

  16. ASTM F1624—12, Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique, ASTM F162409 Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique, N.p., n.d. Web Aug 2, 2014

  17. N. Ohtsuka, Y. Shindo1, and A. Makita, Evaluation of Hydrogen Embrittlement and Temper Embrittlement, EDP Sciences, 2010, Vol 6, p 1–7

  18. M. Szczepanski, The Brittleness of Steel, Vol 1963, Wiley, New York, 1963, p 197–199

    Google Scholar 

  19. M. Darbie Jean, A Model for Studying Hydrogen Embrittlement Using Severely Charged Impact Specimens, Master’s thesis, University of Washington, 1997

  20. ASTM E8, Instron Tension Testing of Metallic Materials, April, 2010, http://www.instron.us/wa/home/default_en.aspx

  21. ASTM E23, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM Designation: E23, American Society for Testing and Materials, West Conshohocken, PA, Vol 03.01

  22. J.B. Boodey, V.S. Agarwala, Hydrogen in Metals: Cadmium Plated Steel, Corrosion 87, San Francisco, 1987, p 1–12

  23. D.A. Berman, The Effect of Baking and Stress on the Hydrogen Content of Cadmium Plated High Strength Steels, Mater. Perform., 1985, 24, p 36–41

    Google Scholar 

  24. R.L.S. Thomas, J.R. Scully, and R.P. Gangloff, Internal Hydrogen Embrittlement of Ultra-Strength AERMET 100 Steel, Metall. Mater. Trans. A, 2003, 34A, p 237–344

  25. T. Zhong, Z.H. Chi-Mei, L. Rong-Bong, F. yi-Feng, and C. Xiang-Rong, Current Solutions to Hydrogen Problems in Steels, C.G Interrante and G.M. Pressouyre, Ed., (Materials park, OH), ASM International, 1982, p 98–103

  26. D. Li, R.P. Gangloff, and J.R. Scully, Hydrogen Trap States in Ultrahigh-Strength Steel, Metall. Mater. Trans. A, 2004, 35A, p 849–865

    Article  Google Scholar 

  27. J.P. Hirth, Effects of Hydrogen on the Properties of Iron and Steel, Metall. Trans. A, 1980, 11, p 861–890

    Article  Google Scholar 

  28. P. Bastien and P. Azou, Influence de L’ecroussage Sur le Frottement Intterieur du Fer et de l’ancior, C.R. Acad Sci. Paris, 1951, 232, p 1845–1848

    Google Scholar 

  29. G.M Pressouyre and I.M Bernstien, An Example of the Effect of Hydrogen Trapping on Hydrogen Embrittlement, Metall. Trans. A, 1981, p 12835–12844

  30. J. Albrecht, I.M. Bernstein, and A.W. Thompson, Evidence for Dislocation Transport of Hydrogen in Aluminum, Metall. Trans. A, 1982, 13, p 811

    Article  Google Scholar 

  31. J.K. Tein, K. Nair, and R.R. Jensen, Dislocation Sweeping of Hydrogen and Hydrogen Embrittlment, Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, Ed., (New York, NY), Metallurgical Society of AIME, 1981, p 37–56

  32. M.J. Haynes and R.P. Gangloff, Temperature Dependent Void Sheet Fracture in Al-Cu-Mg-Ag, Metall. Trans. A, 1998, 11, p 1599–1613

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Science Foundation Research Experience for Undergraduates, NSF Grant #EEC-0353668. The authors appreciate the helpful comments and discussion from Dr. Sergiy Kalnaus of Oak Ridge National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Es-Said.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, K., Lee, E.W., Frazier, W.E. et al. Effect of Tempering and Baking on the Charpy Impact Energy of Hydrogen-Charged 4340 Steel. J. of Materi Eng and Perform 24, 329–337 (2015). https://doi.org/10.1007/s11665-014-1268-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1268-1

Keywords

Navigation