Skip to main content
Log in

Hydrogen trap states in ultrahigh-strength AERMET 100 steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hydrogen (H) trap states and binding energies were determined for AERMET 100 (Fe-13.4Co-11Ni-3Cr-1.2Mo-0.2C), an ultrahigh-strength steel using thermal desorption methods. Three major H desorption peaks were identified in the precipitation-hardened microstructure, associated with three distinct metallurgical trap states, and apparent activation energies for desorption were determined for each. The lattice diffusivity (D L ) associated with interstitial H was measured experimentally and verified through trapping theory to yield H-trap binding energies (E b ). Solid-solution elements in AERMET 100 reduce D L by decreasing the pre-exponential diffusion coefficient, while the activation energy for migration is similar to that of pure iron. M2C precipitates are the major reversible trap states, with E b of 11.4 to 11.6 kJ/mol and confirmed by heat treatment that eliminated these precipitates and the associated H-desorption peak. A strong trap state with E b of 61.3 to 62.2 kJ/mol is likely associated with martensite interfaces, austenite grain boundaries, and mixed dislocation cores. Undissolved metal carbides and highly misoriented grain boundaries trap H with a binding energy of 89.1 to 89.9 kJ/mol. Severe transgranular hydrogen embrittlement in peak-aged AERMET 100 at a low threshold-stress intensity is due to H repartitioning from a high density of homogeneously distributed and reversible M2C traps to the crack tip under the influence of high hydrostatic tensile stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.G.H. Wells: Key Eng. Mater., 1993, vols. 77–78, pp. 71–80.

    Google Scholar 

  2. G.B. Olson: Adv. Mater. Processes, 1997, July, pp. 72–79.

  3. R.M. Hemphill and D.E. Wert: U.S. Patent Number 5,087,415, Carpenter Technology Corporation, Reading, PA, Feb. 11, 1992.

  4. W.M. Garrison, Jr.: J. Met., 1990, vol. 46, pp. 20–24.

    Google Scholar 

  5. R. Ayer and P.M. Machmeier: Metall. Trans. A, 1993, vol. 24A, pp. 1943–55.

    CAS  Google Scholar 

  6. C.H. Yoo, H.M. Lee, J.W. Chan, and J.W. Morris: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3466–72.

    Article  CAS  Google Scholar 

  7. C.J. Kuehmann: Ph.D. Dissertation, Northwestern University, Evanston, IL, 1994.

    Google Scholar 

  8. G.B. Olson: Innovations in Ultra-High Strength Steel Technology, 34th Sagamore Army Materials Conf., United States Army Laboratory Command, Watertown, MA, 1987, pp. 3–65.

    Google Scholar 

  9. R.P. Gangloff: in Comprehensive Structural Integrity, I. Milne, R.O. Ritchie, and B. Karihaloo, eds., Elsevier Science, New York, NY, 2003, vol. 6, 2003, pp. 31–101.

    Google Scholar 

  10. E.U. Lee, H. Sanders, and B. Sarkar: in Proc. Tri-Service Conf. on Corrosion, J.V. Kelley and B. Placzankis, eds., Army Research Laboratory, Aberdeen, MD, 2000, CD file S08p2a.pdf.

    Google Scholar 

  11. P. Buckley, B. Placzankis, J. Beatty, and R. Brown: Corrosion/94, NACE, Houston, TX, 1994, paper no. 547.

    Google Scholar 

  12. P.F. Buckley, R. Brown, G.H. Graves, E.U. Lee, C.E. Neu, and J. Kozol: Metallic Materials for Lightweight Applications, 40th Sagamore Army Materials Research Conf., M.G.H. Wells, E.B. Kula, and J.H. Beatty, eds., United States Army Laboratory Command, Watertown, MA, 1993, pp. 377–88.

    Google Scholar 

  13. J.B. Boody and V.S. Agarwala: Corrosion/87, NACE, Houston, TX, 1987, paper no. 224.

    Google Scholar 

  14. D.A. Berman: Mater. Performance, 1985, vol. 24, pp. 36–41.

    CAS  Google Scholar 

  15. R.L.S. Thomas, J.R. Scully, and R.P. Gangloff: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 327–44.

    Article  CAS  Google Scholar 

  16. G.N. Vigilante, J.H. Underwood, and D. Crayton: in Fatigue and Fracture Mechanics, Proc. 30th Nat. Symp., ASTM STP 1360, ASTM International, West Conshohocken, PA, 2000, pp. 377–87.

    Google Scholar 

  17. E.U. Lee: Metall. Trans. A, 1995, vol. 26A, pp. 1313–16.

    CAS  Google Scholar 

  18. W.W. Gerberich, T. Livne, X.-F. Chen, and M. Kaczorowski: Metall. Trans. A, 1988, vol. 19A, pp. 1319–34.

    CAS  Google Scholar 

  19. C.D. Kim and A.W. Loginow: Corrosion, 1968, vol. 24, pp. 313–18.

    CAS  Google Scholar 

  20. H.H. Johnson and R.W. Lin: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., TMS, Warrendale, PA, 1980, pp. 3–25.

    Google Scholar 

  21. G.M. Evans and E.C. Rollason: J. Iron Steel Inst., 1969, vol. 207, pp. 1591–98.

    CAS  Google Scholar 

  22. M. Wang and P.G. Shewmon: in Hydrogen Embrittlement: Prevention and Control, ASTM STP 962, L. Raymond, ed., ASTM, Philadelphia, PA, 1988, pp. 117–24.

    Google Scholar 

  23. R.A. Oriani: Acta Metall., 1970, vol. 18, pp. 147–57.

    Article  CAS  Google Scholar 

  24. L.S. Darken and R.P. Smith: Corrosion, 1949, vol. 5, pp. 1–16.

    Google Scholar 

  25. G.M. Pressouyre and F.M. Faure: in Hydrogen Embrittlement: Prevention and Control, ASTM STP 962, L. Raymond, ed., ASTM, Philadelphia, PA, 1988, pp. 353–71.

    Google Scholar 

  26. G.M. Pressouyre and I.M. Bernstein: Metall. Trans. A, 1978, vol. 9A, pp. 1571–80.

    CAS  Google Scholar 

  27. G.M. Pressouyre: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., TMS, Warrendale, PA, 1981, pp. 27–36.

    Google Scholar 

  28. K. Yamakawa, S. Yonezawa, and S. Yoshizawa: in International Congress on Metallic Corrosion, National Research Council, Toronto, 1984, pp. 254–61.

    Google Scholar 

  29. R.P. Gangloff: in Corrosion Prevention and Control, M. Levy and S. Isserow, eds., United States Army Materials Technology Laboratory, Watertown, MA, 1986, pp. 64–111.

    Google Scholar 

  30. M. Nagumo, M. Nakamura, and K. Takai: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 339–47.

    Article  CAS  Google Scholar 

  31. G.M. Pressouyre and I.M. Bernstein: Acta Metall., 1979, vol. 27, pp. 89–100.

    Article  CAS  Google Scholar 

  32. M.F. Stevens and I.M. Bernstein: Metall. Trans. A, 1985, vol. 16A, pp. 1879–86.

    CAS  Google Scholar 

  33. J.R. Scully, J.A. Van Den Avyle, M.J. Cieslak, A.D. Romig, and C.R. Hills: Metall. Trans. A, 1991, vol. 22A, pp. 2429–43.

    CAS  Google Scholar 

  34. A. Turnbull, R.B. Hutchings, and D.H. Ferriss: Mater. Sci. Eng., 1997, vol. A238, pp. 317–28.

    CAS  Google Scholar 

  35. S.W. Smith and J.R. Scully: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 179–93.

    Article  CAS  Google Scholar 

  36. Yu. Jagodzinski, A. Tarasenko, S. Smuk, S. Tähtinen, and H. Hänninen: J. Nucl. Mater., 1999, vol. 275, pp. 47–55.

    Article  CAS  Google Scholar 

  37. B.G. Pound: Acta Metall., 1998, vol. 46, pp. 5733–43.

    CAS  Google Scholar 

  38. A. McNabb and P.K. Foster: Trans. AIME, 1963, vol. 227, 618–27.

    CAS  Google Scholar 

  39. R.L.S. Thomas, D. Li, R.P. Gangloff, and J.R. Scully: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1991–2003.

    Article  CAS  Google Scholar 

  40. Alloy Data-AERMET 100 Alloy, Carpenter Steel Division, Carpenter Technology Corporation, reading, PA, 1992.

  41. J. Crank: The Mathematics of Diffusion, Oxford University Press, Inc., New York, NY, 1975, p. 414.

    Google Scholar 

  42. P. Shewmon: Diffusion in Solids, TMS, Warrendale, PA, 1989, pp. 9–51.

    Google Scholar 

  43. J. Völkl and G. Alefeld: in Hydrogen in Metals 1—Basic Properties, G. Alefeld and J. Völkl, eds., Springer-Verlag, New York, NY, 1978, pp. 26–29.

    Google Scholar 

  44. D.P. Woodruff and T.A. Delchar: Modern Techniques of Surface Science, Cambridge University Press, Cambridge, United Kingdom, 1986, p. 284.

    Google Scholar 

  45. J.Y. Lee, J.L. Lee, and W.Y. Choo: in Current Solutions to Hydrogen Problems in Steels, ASM, Metals Park, OH, 1982, pp. 423–27.

    Google Scholar 

  46. H.E. Kissinger: Analytical Chemistry, 1957, vol. 29, pp. 1702–06.

    Article  CAS  Google Scholar 

  47. G.M. Pressouyre: Metall. Trans. A, 1979, vol. 10A, pp. 1571–73.

    CAS  Google Scholar 

  48. J.P. Hirth: Metall. Trans. A, 1980, vol. 11A, pp. 861–90.

    CAS  Google Scholar 

  49. H. Hagi: J. Jpn. Inst. Met., 1991, vol. 55 (12), pp. 1283–90.

    CAS  Google Scholar 

  50. O.F. Angeles, R.J. Stueber, and G.H. Geiger: Corrosion, 1976, vol. 32 (5), pp. 179–83.

    CAS  Google Scholar 

  51. T.P. Perng and C.J. Altstetter: Metall. Trans. A, 1986, vol. 17, pp. 2086–90.

    Google Scholar 

  52. D.J. Fisher: in Hydrogen Diffusion in Metals, A 30-Year Retrospective, SCITEC Publications Ltd., Zuerich-Uetikon, Switzerland, 1999, pp. 59–126.

    Google Scholar 

  53. K. Ono and M. Meshii: Acta Metall., 1992, vol. 40, pp. 1357–64.

    Article  CAS  Google Scholar 

  54. I.M. Bernstein and G.M. Pressouyre: in Hydrogen Degradation of Ferrous Alloys, R.A. Oriani, J.P. Hirth, and M. Smialowski, eds., Noyes Publications, Park Ridge, NJ, 1985, pp. 641–711.

    Google Scholar 

  55. G.W. Hong and J.Y. Lee: Scripta Metall., 1983, vol. 17, pp. 823–26.

    Article  Google Scholar 

  56. G.W. Hong and J.Y. Lee: Metall. Trans. A, 1983, vol. 14A, pp. 156–62.

    Google Scholar 

  57. G.W. Hong and J.Y. Lee: J. Mater. Sci., 1983, vol. 18, pp. 271–77.

    Article  CAS  Google Scholar 

  58. B.D. Craig: Acta Metall., 1979, vol. 25, pp. 1027–35.

    Google Scholar 

  59. A. Turnbull and R.B. Hutchings: Mater. Sci. Eng., 1994, vol. A177, pp. 161–71.

    Google Scholar 

  60. R. Gibala and A.J. Kumnick: in Hydrogen Embrittlement and Stress Corrosion Cracking, R. Gibala and R.F. Hehemann, eds., ASM International, Materials Park, OH, 1984, pp. 61–77.

    Google Scholar 

  61. E. Serra, A. Perujo, and G. Benamatti: J. Nucl. Mater., 1997, vol. 245, pp. 108–15.

    Article  CAS  Google Scholar 

  62. C. Paes de Oliveira, M. Aucouturier, and L. Lacombe: Corrosion, 1980, vol. 36, pp. 53–59.

    CAS  Google Scholar 

  63. G.M. Pressouyre: in Current Solutions to Hydrogen Problems in Steels, C.G. Interrante and G.M. Pressouyre, eds., ASM International, Materials Park, OH, 1982, pp. 18–34.

    Google Scholar 

  64. R. Ayer and P.M. Machmeier: Metall. Trans., 1996, vol. 27A, pp. 2510–21.

    CAS  Google Scholar 

  65. J.S. Montgomery and G.B. Oslon: in Gilbert R. Speich Symp. on the Fundamentals of Aging and Tempering in Bainitic and Martensitic Steel Products, Proc. 34th MSWP Conf., ISS-AIME, Warrendale, PA, 1992, pp. 177–214.

    Google Scholar 

  66. R. Ayer and P.M. Machmeier: Metall. Mater. Trans. A, 1998, vol. 29A, p. 903–05.

    Article  CAS  Google Scholar 

  67. G.R. Speich, D.S. Dabkowski, and L.F. Porter: Metall. Trans., 1973, vol. 4, pp. 303–15.

    CAS  Google Scholar 

  68. G. Krauss: Steels, Heat Treatment and Processing Principles, ASM INTERNATIONAL, Materials Park, OH, 1990, p. 75.

    Google Scholar 

  69. H. Hänninen, Y. Yagodzinskyy, O. Tarasenko, P. Castello, and J.-P. Schosger: in Hydrogen Effects in Materials, N.R. Moody and A.W. Thompson, eds., TMS, Warrendale, PA, 2003, in press.

    Google Scholar 

  70. D.L. Johnson, G. Krauss, J.K. Wu, and K.P. Tang: Metall. Trans. A, 1987, vol. 18A, pp. 717–21.

    CAS  Google Scholar 

  71. R.P. Gangloff: in Hydrogen Effects in Materials, N.R. Moody and A.W. Thompson, eds., TMS, Warrendale, PA, 2003, in press.

    Google Scholar 

  72. R.A. Oriani: in Fundamental Aspects of Stress Corrosion Cracking, NACE, Houston, TX, 1969, pp. 32–50.

    Google Scholar 

  73. W.C. Johnson and J.Y. Huh: Metall. Mater. Trans., 2003, in press.

  74. K.N. Akhurst and T.J. Baker: Metall. Trans. A, 1981, vol. 12A, pp. 1059–70.

    Google Scholar 

  75. T.L. Anderson: Fracture Mechanics: Fundamentals and Applications, 2nd ed., CRC Press, Boca Raton, FL, 1995, pp. 117–81.

    MATH  Google Scholar 

  76. W.W. Gerberich, R.A. Oriani, M.-J. Li, X. Chen, and T. Foecke: Phil. Mag. A, 1991, vol. 63, pp. 363–76.

    CAS  Google Scholar 

  77. Y. Katz, N. Tymiak, and W.W. Gerberich: Eng. Fract. Mech., 2001, vol. 68, pp. 619–46.

    Article  Google Scholar 

  78. X. Chen and W.W. Gerberich: Metall. Trans. A, 1991, vol. 22A, pp. 59–70.

    CAS  Google Scholar 

  79. Y. Wei and J.W. Hutchinson: J. Mech. Phys. Solids, 1997, vol. 45, pp. 1253–73.

    Article  MATH  MathSciNet  Google Scholar 

  80. H. Jiang, Y. Huang, Z. Zhuang, and K.C. Hwang: J. Mech. Phys. Solids, 2001, vol. 49, pp. 979–93.

    Article  MATH  Google Scholar 

  81. T.Y. Zhang and J.E. Hack: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 155–59.

    Article  CAS  Google Scholar 

  82. T.Y. Zhang, H. Sheu, and J.E. Hack: Scripta Metall. Mater., 1992, vol. 27, pp. 1605–10.

    Article  CAS  Google Scholar 

  83. D. Li, R.P. Gangloff, and J.R. Scully: Hydrogen Diffusion and Trapping Behavior in Ultrahigh Strength AERMET 100 Steel, University of Virginia, Charlottesville, VA, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Gangloff, R.P. & Scully, J.R. Hydrogen trap states in ultrahigh-strength AERMET 100 steel. Metall Mater Trans A 35, 849–864 (2004). https://doi.org/10.1007/s11661-004-0011-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0011-1

Keywords

Navigation