Skip to main content
Log in

Temperature-dependent void-sheet fracture in Al-Cu-Mg-Ag-Zr

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Previous research showed that tensile fracture strain increases as temperature increases for AA2519 with Mg and Ag additions, because the void-sheet coalescence stage of microvoid fracture is retarded. The present work characterizes intravoid-strain localization (ISL) between primary voids at large constituents and secondary-void nucleation at small dispersoids, two mechanisms that may govern the temperature dependence of void sheeting. Most dispersoids nucleate secondary voids in an ISL band at 25 °C, promoting further localization, while dispersoid-void nucleation at 150 °C is greatly reduced. Increased strain-rate hardening with increasing temperature does not cause this behavior. Rather, a stress relaxation model predicts that flow stress and strain hardening decrease with increasing temperature or decreasing strain rate due to a transition from dislocation accumulation to diffusional relaxation around dispersoids. This transition to softening causes a sharp increase in the model-predicted applied plastic strain necessary for dispersoid/matrix interface decohesion. This reduced secondary-void nucleation and reduced ISL at elevated temperature explain retarded void sheeting and increased fracture strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Haynes and R.P. Gangloff: J. Testing Eval., 1997, vol. 25, pp. 82–98.

    Article  CAS  Google Scholar 

  2. M.J. Haynes, B.P. Somerday, C.L. Lach, and R.P. Gangloff: in Elevated Temperature Effects on Fatigue and Fracture, ASTM STP 1297, R.S. Piascik, R.P. Gangloff, and A. Saxena, eds., ASTM, Philadelphia, PA, 1997, pp. 165–90.

    Google Scholar 

  3. M.J. Haynes and R.P. Gangloff: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1815–29.

    CAS  Google Scholar 

  4. T.B. Cox and J.R. Low, Jr.: Metall. Trans., 1974, vol. 5, pp. 1457–70.

    CAS  Google Scholar 

  5. R.H. Van Stone, T.B. Cox, J.R. Low, Jr., and J.A. Psioda: Int. Met. Rev., 1985, vol. 30, pp. 157–79.

    Google Scholar 

  6. V. Tvergaard: J. Mech. Phys. Solids, 1982, vol. 30, pp. 265–86.

    Article  Google Scholar 

  7. D. Broek: Eng. Fract. Mech., 1973, vol. 5, pp. 55–66.

    Article  CAS  Google Scholar 

  8. D. Broek: in Prospects of Fracture Mechanics, G.C. Shih, H.C. Van Elst, and D. Broek, eds., Noordhoff, Netherlands, 1974, pp. 19–34.

    Google Scholar 

  9. V. Tvergaard: Int. J. Solids Struct., 1982, vol. 18, pp. 659–72.

    Article  Google Scholar 

  10. V. Tvergaard: Int. J. Solids Struct., 1989, vol. 25, pp. 1143–56.

    Article  Google Scholar 

  11. S.I. Oh and J. Kobayashi: “Deformation Mode of Void Growth and Coalescence in the Process of Ductile Fracture,” Report No. AFML-TR-75-95, University of California, Berkeley, CA, 1975.

    Google Scholar 

  12. V. Nagpal, F.A. McClintock, C.A. Berg, and M. Subudhi: in Foundations of Plasticity, A. Sawczuk, ed., Noordhoff, Leyden, 1973, p. 365.

    Google Scholar 

  13. R. Becker and R.E. Smelser: J. Mech. Phys. Solids, 1994, vol. 42, pp. 773–96.

    Article  Google Scholar 

  14. M. Saje, J. Pan, and A. Needleman: Int. J. Fract., 1982, vol. 19, pp. 163–82.

    Article  Google Scholar 

  15. H. Yamamoto: Int. J. Fract., 1978, vol. 14, pp. 347–65.

    Article  Google Scholar 

  16. N. Ohno and J.W. Hutchinson: J. Mech. Phys. Solids, 1984, vol. 32, pp. 63–85.

    Article  Google Scholar 

  17. J. Pan, M. Saje, and A. Needleman: Int. J. Fract., 1983, vol. 21, pp. 261–78.

    Article  Google Scholar 

  18. H.Y. Jeong and J. Pan: Int. J. Fract., 1992, vol. 56, pp. 317–32.

    Article  Google Scholar 

  19. Y. Huang: Mech. Mater., 1993, vol. 16, pp. 265–79.

    Article  Google Scholar 

  20. Y. Huang and J.W. Hutchinson: in The Modelling of Material Behavior and Its Relation to Design, J.D. Embury and A.W. Thompson, eds., TMS-AIME, Warrendale, PA, 1990, pp. 129–47.

    Google Scholar 

  21. E.M. Dubensky and D.A. Koss: Metall. Trans. A, 1987, vol. 18A, pp. 1887–95.

    CAS  Google Scholar 

  22. A.B. Geltmacher, D.A. Koss, P. Matic, and M.G. Stout: Acta Mater., 1996, vol. 44, pp. 2201–10.

    Article  CAS  Google Scholar 

  23. R. Becker: J. Mech. Phys. Solids, 1987, vol. 35, pp. 577–99.

    Article  Google Scholar 

  24. R. Becker, R.E. Smelser, O. Richmond, and E.J. Appleby: Metall. Trans. A, 1989, vol. 20A, pp. 853–61.

    CAS  Google Scholar 

  25. P.E. Magnusen, E.M. Dubensky, and D.A. Koss: Acta Metall., 1988, vol. 36, pp. 1503–09.

    Article  CAS  Google Scholar 

  26. P.E. Magnusen, D.J. Srolovitz, and D.A. Koss: Acta Metall., 1990, vol. 38, pp. 1013–22.

    Article  CAS  Google Scholar 

  27. F.J. Humphreys and P.N. Kalu: Acta Metall., 1987, vol. 35, pp. 2815–29.

    Article  CAS  Google Scholar 

  28. L.F. Mondolfo: Aluminum Alloys Structure and Properties, Butterworth and Co., Woburn, MA, 1976, p. 82.

    Google Scholar 

  29. Y. Leng, W.C. Porr, and R.P. Gangloff: Scripta Metall. Mater., 1990, vol. 24, pp. 2163–68.

    Article  CAS  Google Scholar 

  30. H. Luthy, A.K. Miller, and O.D. Sherby: Acta Metall., 1980, vol. 28, pp. 169–78.

    Article  CAS  Google Scholar 

  31. J.W. Edington: Practical Electron Microscopy in Materials Science, N.V. Philips’ Gloeilampenfabrieken, Eindhoven, 1976, p. 176.

    Google Scholar 

  32. R.H. Van Stone, R.H. Merchant, and J.R. Low, Jr.: in Fatigue and Fracture Toughness-Cryogenic Behavior, ASTM STP 556, C.F. Hickey, Jr. and R.G. Broadwell, eds., ASTM, Philadelphia, PA, 1974, pp. 93–124.

    Google Scholar 

  33. G.T. Hahn and A.R. Rosenfield: Metall. Trans. A, 1975, vol. 6A, pp. 653–68.

    CAS  Google Scholar 

  34. A.L. Gurson: J. Eng. Mater. Technol., Trans. ASME, 1977, vol. 99, pp. 2–15.

    Google Scholar 

  35. P.F. Thomason: Ductile Fracture of Metals, Pergamon Press, Oxford, United Kingdom, 1990, pp. 105–11.

    Google Scholar 

  36. J.W. Hancock and A.C. Mackenzie: J. Mech. Phys. Solids, 1976, vol. 24, pp. 147–69.

    Article  Google Scholar 

  37. Q. Li: Proc. Microscopy Society of America, 52nd Annual Meeting, G.W. Bailey and A.J. Garratt-Reed, eds., San Francisco Press, San Francisco, CA, 1994, pp. 694–95.

    Google Scholar 

  38. S.H. Goods and L.M. Brown: Acta Metall., 1979, vol. 27, pp. 1–15.

    Article  CAS  Google Scholar 

  39. A.S. Argon, J. Im, and R. Safoglu: Metall. Trans. A, 1975, vol. 6A, pp. 825–37.

    CAS  Google Scholar 

  40. T.L. Anderson: Fracture Mechanics: Fundamentals and Applications, CRC Press, London, 1995, pp. 267–68.

    Google Scholar 

  41. H.J. Koenigsmann, E.A. Starke, Jr., and P.E. Allaire: Acta Metall., 1996, vol. 44, pp. 3069–75.

    CAS  Google Scholar 

  42. L.M. Brown and W.M. Stobbs: Phil. Mag., 1976, vol. 34, pp. 351–72.

    CAS  Google Scholar 

  43. A.C. Mackenzie, J.W. Hancock, and D.K. Brown: Eng. Fract. Mech., 1977, vol. 9, pp. 167–88.

    Article  CAS  Google Scholar 

  44. J.W. Hancock and D.K. Brown: J. Mech. Phys. Solids, 1983, vol. 31, pp. 1–24.

    Article  Google Scholar 

  45. P.W. Bridgman: Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York, NY, 1952, pp. 9–37.

    Google Scholar 

  46. J.F. Knott: Fundamentals of Fracture Mechanics, Butterworth and Co., London, 1973, pp. 94–98.

    Google Scholar 

  47. J.M. Howe: Interfaces in Materials, John Wiley & Sons, Inc, New York, NY, 1997, pp. 51–55 and 416–19.

    Google Scholar 

  48. J.E. Hatch: Aluminum: Properties and Physical Metallurgy, ASM INTERNATIONAL, Metals Park, OH, 1984, pp. 5–6.

    Google Scholar 

  49. E.A. Starke, Jr.: Mater. Sci. Eng., 1977, vol. 29, pp. 99–115.

    Article  CAS  Google Scholar 

  50. J.T. Staley: Properties Related to Fracture Toughness, ASTM STP 605, ASTM, Philadelphia, PA, 1976, pp. 71–103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haynes, M.J., Gangloff, R.P. Temperature-dependent void-sheet fracture in Al-Cu-Mg-Ag-Zr. Metall Mater Trans A 29, 1599–1613 (1998). https://doi.org/10.1007/s11661-998-0084-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0084-3

Keywords

Navigation