Skip to main content
Log in

Evidence for Dislocation Transport of Hydrogen in Aluminum

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The use of concurrent plastic straining during cathodic charging of equiaxed-grain, high purity 7075 aluminum has provided evidence that dislocations can transport large amounts of hydrogen deep into the interior of the alloy; as a direct consequence of this, highly brittle intergranular fracture ensues. This effect is most pronounced for heat treatments that produce a microstructure which allows for planar dislocation arrays and long slip lengths. The implications of these findings to the occurrence of hydrogen embrittlement in other alloy systems have been assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Gest and A. R. Troiano:L'hydrogen dans les Metaux, Editions Science et Industrie, Paris, 1972, pp. 427–32.

    Google Scholar 

  2. R. J. Gest and A. R. Troiano:Corrosion, 1974, vol. 30, pp. 274–79.

    CAS  Google Scholar 

  3. R. M. Pelloux and J. A. Van den Avyle:Hydrogen in Metals, I. M. Bernstein and A. W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 275–76.

    Google Scholar 

  4. J. Albrecht, B. J. McTiernan, I. M. Bernstein, and A. W. Thompson:Scripta Met., 1977, vol. 11, pp. 393–97.

    Article  Google Scholar 

  5. T. F. Klimowicz and R.M. Latanision:Metall. Trans. A, 1978, vol. 9A, pp. 597–99.

    CAS  Google Scholar 

  6. J. Albrecht, A. W. Thompson, and I. M. Bernstein:Metall. Trans. A, 1979, vol. 10A, pp. 1759–65.

    CAS  Google Scholar 

  7. M. Taheri, J. Albrecht, I. M. Bernstein, and A. W. Thompson:Scripta Met., 1979, vol. 13, pp. 871–75.

    Article  CAS  Google Scholar 

  8. W. Gruhl and D. Brungs:Metall, 1969, vol. 23, pp. 1020–26.

    CAS  Google Scholar 

  9. L. Montgrain and P. R. Swann:Hydrogen in Metals, I. M. Bernstein and A.W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 575–84.

    Google Scholar 

  10. G.M. Seamans:J. Mater. Sci., 1978, vol. 13, pp. 27–36.

    Article  Google Scholar 

  11. G.H. Koch:Corrosion, 1979, vol. 35, pp. 73–78.

    CAS  Google Scholar 

  12. N.J.H. Holroyd and D. Hardie:Corros. Sci., 1981, vol. 21, pp. 129–44.

    Article  CAS  Google Scholar 

  13. M. O. Speidel:Hydrogen in Metals, I.M. Bernstein and A. W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 249–73.

    Google Scholar 

  14. A. W. Thompson and I. M. Bernstein:Reviews on Coatings and Corrosion, 1975, vol. 2, pp. 2–44.

    Google Scholar 

  15. J. A. S. Green, H. W. Hayden, and W. G. Montague:Effect of Hydrogen on Behavior of Materials, A. W. Thompson and I. M. Bernstein, eds., TMS-AIME, New York, NY, 1976, pp. 200–15.

    Google Scholar 

  16. G.M. Seamans, R. Alani, and P. R. Swann:Corros. Sci., 1976, vol. 16, pp. 443–59.

    Article  Google Scholar 

  17. A. J. Bursle and E. N. Pugh:Environment-sensitive Fracture of Engineering Materials, Z. A. Foroulis, ed., TMS-AIME, Warrendale, PA, 1979, pp. 18–47.

    Google Scholar 

  18. R.M. Latanision, O.H. Gastine, and C. R. Compeau:ibid.,, pp. 48–70.

    Google Scholar 

  19. M. O. Speidel and M. V. Hyatt:Advances in Corrosion Science and Technology, M.G. Fontana and R. W. Staehle, eds., Plenum, New York, NY, 1972, vol. 2, pp. 115–335.

    Google Scholar 

  20. A. W. Thompson and I. M. Bernstein:Advances in Corrosion Science and Technology, M.G. Fontana and R.W. Staehle, eds., Plenum Press, New York, NY, 1980, vol. 7, pp. 53–175.

    Google Scholar 

  21. D. Hardie, N.J.H. Holroyd, and R. N. Parkins:Metal Science, 1979, vol. 9, pp. 603–60.

    Google Scholar 

  22. J. K. Tien, A. W. Thompson, I. M. Bernstein, and R. J. Richards:Metall. Trans. A, 1976, vol. 7A, pp. 821–29.

    CAS  Google Scholar 

  23. J.P. Hirth and H.H. Johnson:Atomistics of Fracture, R. M. Latanision, ed., Plenum Press, New York, NY, in press.

  24. J. Albrecht and G. Lütjering:Influence of Microstructure on Fatigue Crack Propagation Rate of Aluminum Alloys, Report ESA-TT-418, European Space Agency [Access No. N78-18203] DFVLR, Cologne, W. Germany, 1974.

    Google Scholar 

  25. H. Y. Hunsicker:Aluminum, ASM, Metals Park, OH, 1967, vol. 1, pp. 109–62 (esp. p. 154).

    Google Scholar 

  26. J. L. Nelson and E.N. Pugh:Metall. Trans. A, 1975, vol. 6A, pp. 1459–60.

    CAS  Google Scholar 

  27. L. Christodoulou and H. M. Flower:Acta Met., 1980, vol. 28, pp. 481–87.

    Article  CAS  Google Scholar 

  28. J.R. Griffiths and D.R.J. Owen:J. Mech. Phys. Solids, 1971, vol. 19, pp. 419–31.

    Article  Google Scholar 

  29. D. A. Hardwick, I. M. Bernstein, and A. W. Thompson: unpublished research, Carnegie-Mellon University, 1981.

  30. H.H. Johnson and J.P. Hirth:Metall. Trans. A, 1976, vol. 7A, pp. 1543–48.

    CAS  Google Scholar 

  31. M.I. Baskes, C.F. Melius, and W.D. Wilson:Z.f. Phys. Chem., 1979, vol. 116, p. 289.

    Google Scholar 

  32. M.I. Baskes, C.F. Melius, and W.D. Wilson:Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., TMS-AIME, Warrendale, PA, 1981, pp. 67–76.

    Google Scholar 

  33. D. C. Stewart and N. F. Fiore:Scripta Met., 1969, vol. 3, pp. 93–97.

    Article  CAS  Google Scholar 

  34. M. Kurkela and R.M. Latanision:Scripta Met., 1979, vol. 13, pp. 927–31.

    Article  CAS  Google Scholar 

  35. A.W. Thompson and B.A. Wilcox:Scripta Met., 1972, vol. 6, pp. 689–96.

    Article  CAS  Google Scholar 

  36. C.G. Rhodes and A. W. Thompson:Metall. Trans. A, 1977, vol. 8A, pp. 949–54.

    CAS  Google Scholar 

  37. N.F. Fiore and J. A. Kargol:Hydrogen Effects in Metals, I. M. Bernstein and A. W. Thompson, eds., TMS-AIME, Warrendale, PA, 1981, pp. 851–62.

    Google Scholar 

  38. R. Garber, I. M. Bernstein, and A. W. Thompson:Metall. Trans. A, 1981, vol. 12A, pp. 225–34.

    Google Scholar 

  39. T. Ohnishi and K. Higashi:Aluminium, 1981, vol. 57, pp. 558–59.

    Google Scholar 

  40. M. R. Louthan:Hydrogen in Metals, I.M. Bernstein and A. W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 53–78.

    Google Scholar 

  41. A. W. Thompson:Metall. Trans., 1973, vol. 4, pp. 2819–25.

    Article  CAS  Google Scholar 

  42. A. W. Thompson and J. A. Brooks:Metall. Trans. A, 1975, vol. 6A, pp. 1431–42.

    CAS  Google Scholar 

  43. B. C. Odegard, J. A. Brooks, and A. J. West:Effect of Hydrogen on Behavior of Materials, A. W. Thompson and I. M. Bernstein, eds., TMS-AIME, New York, NY, 1976, pp. 116–25.

    Google Scholar 

  44. A. J. West and M.R. Louthan:Metall. Trans. A, 1979, vol. 10A, pp. 1675–81.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

J. ALBRECHT, formerly Postdoctoral Associate at Carnegie-Mellon University,.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, J., Bernstein, I.M. & Thompson, A.W. Evidence for Dislocation Transport of Hydrogen in Aluminum. Metall Trans A 13, 811–820 (1982). https://doi.org/10.1007/BF02642394

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642394

Keywords

Navigation